

Evaluating dietary policies with simulation models: overview and challenges

Insights from a systematic scoping review* and beyond

Karl Emmert-Fees | TU München | Helmholtz Zentrum München

♥ @kemmert_fees

☑ karl.emmert-fees@helmholtz-muenchen.de

*Published in Advances in Nutrition: https://doi.org/10.1093/advances/nmab028

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

4 The economic evaluation of dietary policies is complicated:

- Relevant NCD outcomes take long to manifest

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

- Relevant NCD outcomes take long to manifest
- Policy cost (political and financial) are immediate

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

- Relevant NCD outcomes take long to manifest
- Policy cost (political and financial) are immediate
- Randomized experiments hardly feasible

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

- Relevant NCD outcomes take long to manifest
- Policy cost (political and financial) are immediate
- Randomized experiments hardly feasible
- Natural experiments are rare (?)

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

- Relevant NCD outcomes take long to manifest
- Policy cost (political and financial) are immediate
- Randomized experiments hardly feasible
- Natural experiments are rare (?)
- Actual policy response often multi sectoral and hard to estimate

Population-based dietary policies are a key component in the prevention of non-communicable diseases (NCDs) like obesity, CVD and diabetes.

4 The economic evaluation of dietary policies is complicated:

- Relevant NCD outcomes take long to manifest
- Policy cost (political and financial) are immediate
- Randomized experiments hardly feasible
- Natural experiments are rare (?)
- Actual policy response often multi sectoral and hard to estimate

Solution: Simulation modeling to analyze long-term health and economic impacts of dietary policies.

Simulation Modeling in Public Health

Why do we need simulation modeling?

- Answer questions about complex systems
- Analyze multiple uncertainties
- Compare many different scenarios
- Predict future trajectories and events

Why do we need simulation modeling?

Policy Evaluation Netwo

- Answer questions about complex systems
- Analyze multiple uncertainties
- Compare many different scenarios
- Predict future trajectories and events


 \rightarrow Make a decision 4

Why do we need simulation modeling?

- Answer questions about complex systems
- Analyze multiple uncertainties
- Compare many different scenarios
- Predict future trajectories and events

Examples:

- Screening strategies
- Infectious diseases
- Health Tech. Assessment
- NCD prevention
- Health services research

 \rightarrow Make a decision 4

Each problem requires a specific modeling approach:

1. Comparative risk assessment models

- 1. Comparative risk assessment models
- 2. Decision trees

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models
- 5. Discrete event simulations

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models
- 5. Discrete event simulations
- 6. Compartmental infectious disease models

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models
- 5. Discrete event simulations
- 6. Compartmental infectious disease models
- 7. System dynamics models

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models
- 5. Discrete event simulations
- 6. Compartmental infectious disease models
- 7. System dynamics models
- 8. Agent-based models

- 1. Comparative risk assessment models
- 2. Decision trees
- 3. Markov cohort models (incl. multi-state life table models)
- 4. Markov microsimulation models
- 5. Discrete event simulations
- 6. Compartmental infectious disease models
- 7. System dynamics models
- 8. Agent-based models

Models for evaluating dietary policies

There are some predominant types of modeling approaches:

There are some predominant types of modeling approaches:

1. Comparative risk assessment models

Combines outcome forecast and risk factor reduction under policy

Models for evaluating dietary policies

There are some predominant types of modeling approaches:

1. Comparative risk assessment models

Combines outcome forecast and risk factor reduction under policy

2. Markov cohort models (incl. multi-state life table models)

Homogeneous cohorts transition between health states

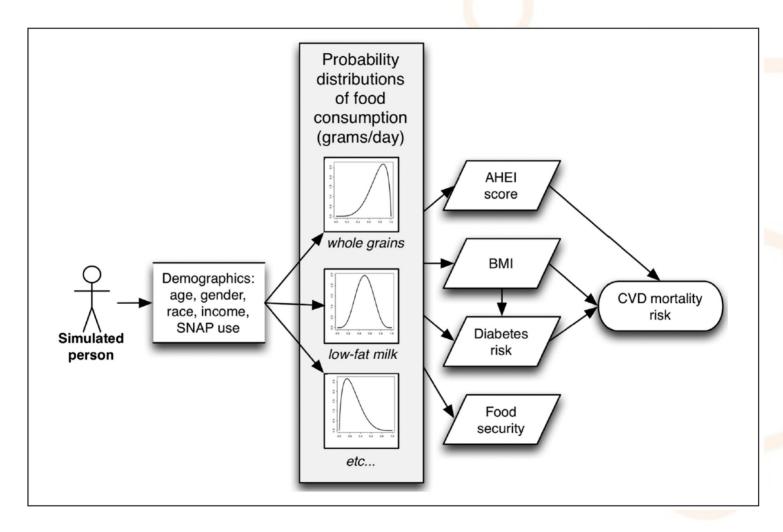
Models for evaluating dietary policies

There are some predominant types of modeling approaches:

1. Comparative risk assessment models

Combines outcome forecast and risk factor reduction under policy

2. Markov cohort models (incl. multi-state life table models)


Homogeneous cohorts transition between health states

3. Markov microsimulation models

Individual risk factor trajectories and outcomes are calculated and aggregated to get population results

So what's the general idea?

Data requirements?

Policy data:

- Mechanism
- Proximal and distal effects
- Implementation costs

Population data:

- Demographic
- Mortality
- Socio-economic
- Spatial information

Epidemiological data:

- Risk factors distributions
- Disease information
- Risk factor interactions

Etiologic data:

- Risk scores
- Dose-response
- Age and sex patterns

Health economic data:

- Health care costs
- Productivity losses
- Quality of life

Related Challenges in the Evaluation of Dietary Policies

Specific challenges

Adequate understanding and reflection of **complex nutritional processes**

- Energy balance
- Dietary quality vs. quantity
- Macro- vs. micronutrients

Knowledge and assumptions about **causal policy effects**

- Heterogeneity in policy response (equity effects!)
- Multi-component interventions
- Compensation behaviour

Specific challenges

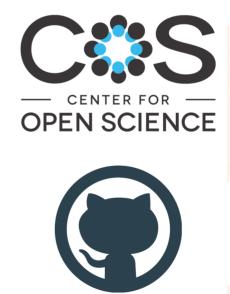
Adequate understanding and reflection of **complex nutritional processes**

- Energy balance
- Dietary quality vs. quantity
- Macro- vs. micronutrients

Knowledge and assumptions about causal policy effects

- Heterogeneity in policy response (equity effects!)
- Multi-component interventions
- Compensation behaviour

General challenges I


Pelicy Evaluation Network

Validity is one of the biggest issues in simulation modeling in general

- Systematic biases in self-reported population dietary data?
- Policy and effect estimate assumptions?
- Unforeseen behavioral changes?

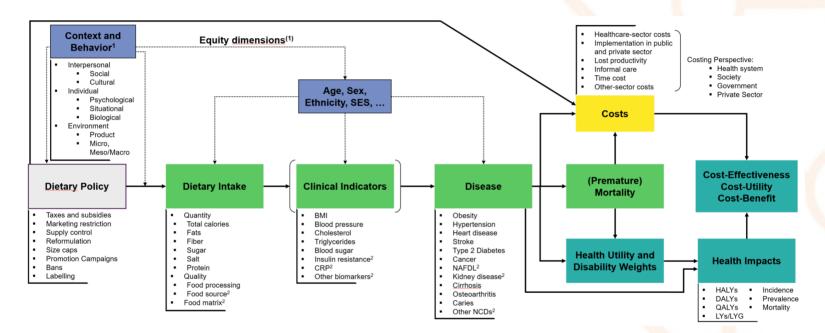
Transparency is often not implemented but crucial for trust in modeling results

- Reporting guidelines
- Access to code (e.g. GitHub)
- Extensive documentation

General challenges II

Inclusion of non-health sector effects of dietary policies

- Environmental consequences
- Productivity losses
- Systems thinking


Comparison of modeling approaches and assumptions

- Comparative modeling to assess structural uncertainty
- Complexity vs. usability of models in policy making
- Comparison with results from quasi-experimental studies

Putting everything into context

Which (health) aspects need to be considered in dietary policy simulation?

Logic model of dietary policy evaluation

Special thanks to all collaborators:

Florian M. Karl, Michael Laxy, Peter von Philipsborn and Eva A. Rehfuess.

Thank you for your attention!

Questions?

♥ @TUMPublicHealth

☑ karl.emmert-fees@helmholtz-muenchen.de