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Methods for impact evaluation 

 
1. ABSTRACT 

Deliverable 3.1 “Methods for Impact Evaluation” reports the activities and research findings of sub-tasks 

3.1.2 and 3.1.3 of the PEN project. 

The focus of this Deliverable is on methods for the quantification of policy impacts in terms of efficacy and 

effectiveness. It responds to two key needs: (a) identifying the strengths, weaknesses and the main conditions 

required for a rigorous ex-ante evaluation of policy impacts through lab-field-natural experiments, especially 

in relation to capturing behavioural phenomena; and (b) reviewing the applicability and limitations of quasi-

experimental econometric methods for the ex-post evaluation of policy impacts based on observational data 

not collected for evaluation purposes, and case studies.  

The Deliverable provides an overview of the use of: 

- experiments for policy evaluation, with a discussion of the methodological challenges. Results of the 

comparison between the framed-field experiment and the natural-field experiment on nutritional 

labelling in France, that were presented during the PEN-WP3 workshop in September are presented in 

a detailed case-study analysis. 

- quasi-experimental methods for policy evaluation, through a detailed report (Appendix 1) on the 

methodological challenges for the various approach. The report includes a discussion of the two case 

studies (Catalunya sugar-sweetened beverage tax, and Cycling May campaign in Gdansk) accompanied 

with Stata codes and data to replicate the results. A Stata do file (Syntax.do) and two Stata dataset 

(CPI.dta, Price.dta) were part of this Deliverable, requests to see this material can be sent to jpi-

pen@leibniz-bips.de.  

 

2. THE USE OF EXPERIMENTS FOR POLICY EVALUATION 

Experiments are increasingly used to help public and private decision-making on societal issues. In particular, 

they are a common methodology used in consumer research to better understand and predict the behaviour 

of individuals in the marketplace. Experiments allow for the ex-ante evaluation of an action; i.e. Experiments 

make it possible to analyse economic phenomena for which there is no (or not yet) data or for which data are 

difficult to observe or exploit. This is particularly useful when, for instance, policy makers are looking for 

arguments to support the relevance of a policy they are considering launching in the future. We will later see 

the example of the French Health Ministry, which conducted in 2016 experiments to determine the best format 

for nutrition labelling, resulting in the Nutri-Score on the front of food packaging in France and some other 

European countries. 

In the mix of evaluation methods, experiments serve as the middle ground between theoretical simulations 

and real-world observations (see Table 1). On the one hand, simulation-type studies have a high degree of 

internal structure and validity but may lack behavioural realism. On the other hand, observational studies 

examine actual behaviour in real-life situations, but they often lack the level of control needed to conclusively 

identify causal effects. In this regard, experiments offer an interesting alternative. First, the results of the 

experiments are derived from actual behaviours rather than from deductive-hypothesis inferences in 

simulation-type studies or from declarative statements in survey or focus group studies. Second, experiments 

differ from observational approaches in that they are inherently designed to compare outcomes between 
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groups (treatment groups vs. control group), thus allowing the researcher to identify a causal relationship 

between an intervention and a respondent's reaction. 

Nevertheless, the tension between external and internal validity still exists even across the spectrum of 

experimental methods. “Where internal validity often requires abstraction and simplification to make the 

research more tractable, these concessions are made at the cost of decreasing external validity” (Schram 

2005). Following a long tradition of deductive reasoning and modelling in economics, internal validity is quite 

rightly the utmost priority for most economists. This is how laboratory are carried out in a controlled 

environment with rigorous design protocols and relatively small samples. The main objective here is to provide 

results that can be replicated to support or reject existing or emerging theories. Although theory should always 

guide economists, external validity is of major importance when the objective is to advise policy makers 

(“whispering to the ears of princes”, Roth 1995). In order to improve prediction, the experiments must then 

incorporate key characteristics that are specific to the market under study. Thus, field experiments are carried 

out in a less controlled environment but with higher ecological validity. 

Hence, the methodological challenge is to devise experiments that better mimic real-life situations without 

compromising the control of the explanatory variables. In the following, we first describe experiments in 

economics and how they differ from experiments is psychology. Second, we discuss the internal and external 

validity of experiments. Finally, we look at the case study of experiments used to evaluate the impact of 

nutrition labelling systems on the front of pack of food. 

 

Type of 
study 

NUMERICAL 
SIMULATIONS 

EXPERIMENTS 
NATURAL 

DATA 
SURVEYS and 

FOCUS GROUPS 
Conventional 

laboratory 
experiment 

Artefactual 
field 

experiment 

Framed-field 
experiment 

Natural-field 
experiment 

Intervention 
examined 

Artificial exogenous shock 
Naturally-
occuring 
events 

“Let us pretend” 

Sample 
Fictious character 

(e.g. the  Homo 
Oeconomicus) 

Students Target population 

Nature of 
the task 

Abstracted situations Contextualized situations 

Setting In Vitro In Vivo 

Nature of 
the answer 

Deductive-
hypotheses 
inference 

Behaviours Statements 

Table 1. Description of methods used to evaluate policy impacts 

a. Experiments in economics 

An experiment in economics consists of reconstituting a simplified economic situation in a controlled 

environment. The experimenter chooses the variables of interest as well as other variables, either explanatory 

or control variables, in order to determine the impact ceteris paribus1 of these on the individual or collective 

behaviour of the participants. Such a control makes it possible to identify the causal effect of these variables. 

Experiments serve one or more of the three purposes defined by Davis and Holt (1993) and Roth (1988): (i) to 

test theory in order to identify mechanisms not predicted by existing models; (ii) to produce facts in order to 

                                                      
1 This consists of varying the variable under study when all other variables are held constant. 
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identify previously unknown behavioural regularities that can be incorporated into theoretical models; (iii) to 

aid decision making by testing the implications of implementing a new mechanism. The first two objectives are 

interdependent and mutually supportive. The third objective is to assess the economic consequences of an 

organisational or institutional change. It is thus possible to assess the impact of the implementation of various 

public policies, different forms of market regulation or different organisational systems within the company. 

Most of the experiments found in consumer-focused journals follow the experimental norms used in 

psychology. While experimental economics draws heavily on experimental psychology, conventional 

laboratory experiments in economics (Table 1) are distinguished by the inclusion of four basic practices: 

abstraction, stationary replication, consequential incentives and the absence of deception (Huff 2014). 

(i) Abstraction 

Abstraction means using general and neutral terminology in the instructions and in the stimuli used during the 

experiment (Davis and Holt 1993). The idea is to employ the most parsimonious procedure possible in order 

to more easily isolate the variables of interest. This is particularly useful for testing theories. Indeed, abstract 

terminology simplifies the experimental context and thus makes the conclusions of the theory easier to 

observe and test. The rationale is that if a theory does not hold in its simplest form, it is unlikely to hold in the 

more complex real world. 

Another benefit of abstraction is that it helps researchers to replicate and compare results. It allows 

experimentalists across the world to design very similar protocols. By employing the same terminology and 

measuring the same dependent variables, it contributes to the generalizability and the robustness of the 

findings (Camerer 2003). 

(ii) Stationary Replication 

Historically, economists have sought to predict stable or equilibrium behaviour (Camerer 1997). In other 

words, they prefer to know what decision a person will typically make after being confronted with the decision 

several times rather than what that person will decide when confronted with the decision the first or second 

time. Therefore, experimental economists typically conduct repeated trials. In a single session, participants 

make several decisions in succession under strictly identical conditions. It allows the study on how behaviours 

converge toward the prediction of a theory. 

(iii) Consequential Incentives  

For most economists, incentives are necessary to reveal the truth (Kagel and Roth 1995). For Plott (1982), 

laboratory and field experiments are useful in economics because they reflect a real decision process with real 

people performing defined tasks and whose decisions and efforts on those tasks have real consequences. A 

proper incentive design follows the principles of salience and dominance (Smith 1982). Salience requires that 

payoffs are dependent on the choices available. Dominance ensures that payoffs are high enough that 

participants have an incentive to do their best to complete the experimental task. When salience and 

dominance are adequate, an experiment is said to be incentive compatible: Participants get the best results 

for themselves simply by acting on their true preferences. 

Consequential incentives essentially prevent the now well documented hypothetical bias (see for example 

Loomis, 2011). Hypothetical bias is defined as the gap between the response provided by a participant in a 

hypothetical experiment and what he or she would have indicated in a real or incentivised situation. There are 

many reasons for the existence of hypothetical bias. One of them is social desirability or also called demand 

artefacts. Participants are deliberately or even unconsciously tempted to answer in the most socially 

acceptable way. Participants may also fail to reveal their true preferences in hypothetical situations because 
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they find it difficult to project themselves onto the task proposed by the experimenter. Finally, they may 

answer strategically in the belief that their answers will have real consequences, for example on questions 

relating to the pricing of a product or service, the implementation of a public policy, or the marketing of a new 

good (Lusk, McLaughlin, and Jaeger 2007). 

(iv) The absence of Deception 

Experimenters have long advocated against the use of deception in their protocols. Deception is actually 

banned in the scientific journal Experimental Economics and in a large number of renowned economic journal. 

The reasons are twofold: incentive control on the one hand and negative externalities for the profession on 

the other (Cooper 2014). First, the credibility of the instructions must not be questioned by the subjects. If 

they believe that they will be paid on the basis of criteria other than those stated in the instructions, the 

experimenter loses control of the incentives and the hypotheses formulated are no longer valid. Secondly, 

subjects who have been deceived in a previous experiment will doubt the instructions when participating in 

future experiments, even if those experiments do not use deception. 

Experiments in consumer research are not typical economic experiments. First, consumer researchers 

traditionally seek a realistic experimental context rather than abstraction. This might be explained by the fact 

that external validity is often favoured over internal validity. Second, they very rarely use stationary replication, 

even though consumption activities are often repeated several times in a relatively short period of time. Third, 

although the use of consequential incentives in consumer studies is more common than the use of abstraction 

and stationary replication, it is surprising that the vast majority of consumer studies do not use them. 

Appropriate incentives offer both greater traction (internal validity) and greater realism (external validity) and, 

as such, are fully compatible with consumer research. Finally, deception is still used in consumer research, 

mainly in the form of cover stories, but its use is declining significantly. 

Overall, experiments in consumer research are increasingly adopting the best practices of conventional 

laboratory experiments. The most difficult methodological challenge is certainly to strengthen the internal 

validity of the results without weakening the external validity. 

b. Internal and external validity 

Experimental economics is based on the principle of control, both of the variables and of the environment. 

This control is essential to study the causal impact of a variable on individual behaviour and thus to have strong 

internal validity. Conventional laboratory experiments allow a high degree of control. However, this control is 

often at the expense of a strong generalizability of the results (i.e. strong external validity). Indeed, by keeping 

the experimental setting free of potential noise, the laboratory can produce artefactual behaviour that is not 

replicated in ecological contexts, thereby undermining external validity. Conversely, the closer the 

experimental setting is to the real world, the more difficult it is to identify and isolate explanatory variables. 

To define these notions of validity more precisely, we take up the summary presentation of Falk and Heckman 

(2009). Suppose that a researcher wishes to determine the effect of a variable denoted 𝑋1 on a variable 

denoted 𝑌, knowing that there is a function 𝑓 that links the two variables as follows: 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛). The 

researcher thus studies the effect of variations in the variable 𝑋1 on the variable 𝑌 given a given level of the 

other variables �̆� = (�̆�2, … , �̆�𝑛). We can then define internal validity as the researcher's level of control over 

the  �̆� variables when determining causality so that it is the effect of variable 𝑋1 on the variable denoted 𝑌 

that he is measuring. And we can define external validity as the degree to which causality is maintained 
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between these two variables both for one level �̆� of the other variables and for another level of these variables, 

e.g. �̃� = (�̃�2, … , �̃�𝑛). 

External validity is relatively more important for experiments searching for empirical regularities than for 

theory-testing experiments. This is particularly the case for policy evaluation experiments: A policy maker will 

want to know whether the results obtained in the laboratory will be sufficiently predictive. Formally, any causal 

relationship is externally valid if the causal relationship observed in the lab is also valid outside the lab. 

According to Guala (2002), this question of parallelism between the real world and the laboratory is thus one 

of the most important methodological issues in experimental economics. Several recent works try to define 

more precisely the conditions of this external validity and question the relevance of the generalisation of 

experimental results to the 'real world' (Levitt and List 2007; Kessler and Vesterlund 2015). 

An experiment lacks of external validity when behaviours observed in the laboratory do not replicate in the 

field. External invalidity occurs when the laboratory setting (i) does not replicate all relevant real-world stimuli 

or (ii) generates distorted behaviour. 

(i) Field experiments 

External validity is first addressed by integrating the essential features of the case studied. These features 

relate to the sample, the task and the environment of the study. Conventional laboratory experiments usually 

invite randomly selected students to perform an abstract task in a classroom. Harrison and List (2004) 

distinguish three types of so-called field experiments (see table 1). They all differ, to varying degrees, from 

conventional laboratory experiments in that they successively and cumulatively address issues of 

representativeness, framing and ecology. By incrementally importing the target population, then the task and 

finally the environment into the experimental design, the observed behaviours are more and more likely to 

replicate those that occur naturally. 

- Representativeness. The first step in improving the parallelism between the laboratory and the 

outside world is to develop a sample of participants that is representative of the population being 

studied. Experiments where participants are not students but the target population of the study 

(farmers, consumers, business leaders, etc.) are called Artefactual-Field experiments.  

- Framing. The second step consists in contextualising the experimental setting by deriving 

decisions, products, information, etc. from the real world. Contextualized experiments with non-

student participants are called Framed-Field experiments. Artefactual-field experiments and 

framed-field experiments are still carried in laboratories (in vitro). 

- Ecology. The final step is to leave the laboratory walls to observe participants behaving in their 

natural environment (in vivo) in so-called Natural-Field experiments. Natural-Field experiments 

transpose the controlled procedures of conventional experiments outside the laboratory. They are 

also known as lab-in-the-field studies. 

Field experiments remain experiments in the sense that, as in a traditional experimental design, the 

independent variable is manipulated by the experimenter. And as in conventional laboratory experiments, the 

dependent variables are expected to be measured under strict conditions ceteris paribus. It is indeed a virtue 

of experimental design that any potential impact of other variables (extraneous factors) is equalised between 

treatments. Nevertheless, the more realistic are the sample, task and environment, the more difficult it is to 

control for all variables. To the extent that uncontrolled extraneous variables may be impacting on the 

dependent variables, the causal relationship between the dependent variables and the manipulated 
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independent variable cannot be established, thus undermining internal validity. To ensure sufficient control 

over confounding factors, field experiments must follow standardised procedures to warrant sound design and 

analysis. 

Provided they are well designed, properly conducted, and enrol enough participants, Randomized Controlled 

Trials may ensure such control. Randomized controlled trials consist in randomly allocating participants among 

compared treatment groups and control group. The random assignment of participants to treatments reduces 

selection bias and assignment bias. The presence of a control group allows the effect of the manipulated 

independent variable to be isolated. Randomised controlled trials have become the gold standard for 

interventional studies. While quasi-experimental methods also use a control group, they differ from field 

experiments in that they do not use randomization. Therefore, quasi-experiments are subject to concerns 

regarding internal validity, because the treatment and control groups may not be comparable at baseline. 

Nevertheless, they may be the only option when field experiments are not feasible. 

(ii) Artificiality 

Artificiality of the setting is a major obstacle to the external validity (Bardsley 2005, Schram 2005). An 

experiment has the danger of creating its own world. The artificial nature of the laboratory situation may lead 

to different choice behaviours from a real context (Harrison Harstad and Rutström 2004).  

First, consciously participating in an experiment may condition responses in a way that affects the causal 

relationship observed (Starmer 1999). Participants in experiments may change their behaviours due to cues 

about what constitutes appropriate behaviour. Such demand effects are about the vertical relationship 

between the experimenter (the expert) and the participant: Participants have to produce what is demanded 

by the experimenter. Demand effects can either be social or purely cognitive (Zizzo 2010). Participants may be 

sensitive to the fact that an experimenter is monitoring their behaviour (Hawthorne effect). For instance, 

participants may be inclined to send messages to the experimenter in order to influence the outcome of the 

study (strategic bias) or behave in a way that they think is expected by the experimenter (desirability bias). 

Also, participants may not respond to the experimenter instructions as demanded. Such misperceptions of the 

task can occur when participants simply do not understand the task at hand (especially when tasks are very 

abstract) or when they have false beliefs about what the experimenter actually wants to test. Compatible 

incentives, clear task construction and absence of deception are the experimenters' best weapons to ensure 

that the observed behaviours reflect as much as possible the participants' true preferences. 

Secondly, participants in experiments are not in the same frame of mind as they usually are in everyday 

situations. They are generally more focused, pay more attention to external cues and are more reflective. They 

usually have time to make a decision and make the necessary efforts. In everyday life, they are more likely to 

make rash decisions and rely on heuristics. According to Kahneman (2011)’s dual cognitive system, 

experiments are conducive to the deliberate system 2 at the expense of the intuitive system 1. 
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c. Framed-field experiment vs. Natural-field experiment (Case study 1) 

In 2016, two almost identical field and laboratory experiments took place in France to examine the nutritional 

impact of different front-of-pack labelling schemes, providing a unique opportunity to undertake a 

methodological comparison. 

In response to the rising health costs generated by the obesity epidemic, the political response has been to 

pass a bill to introduce a harmonised system that will be most effective in changing consumer purchasing 

behaviour. The French health modernisation law of 26 January 2016 calls for a nutrition labelling system based 

on the nutritional composition of products. Former French Health Minister Marisol Touraine advocated the 

Nutri-Score, a simplified labelling format that classifies foods from A, green and healthy, to E, red and 

unhealthy. Her proposal triggered a heated debate among stakeholders, who questioned its effectiveness and 

the resulting stigma that such a label might carry. To settle the matter, the French authorities brought together 

all food stakeholders and launched a competition: each stakeholder was invited to propose a labelling format 

which will then be tested during a trial period to see which one is the most efficient in encouraging consumers 

healthier food choices. Four formats joined the contest: the Reference Intakes, SENS, respectively endorsed 

by the food industries and the retailers, the Multiple Traffics Lights and the Nutri-Score. A large natural field 

experiment was therefore carried out in 60 supermarkets to see which format was best for changing food 

purchases towards healthier diets. Given the heat of the debate2, the Ministry of Health needed robust results 

that would be difficult to dispute. It therefore decided to complement the natural field experiment with a 

laboratory framed-field experiment. The two studies are respectively detailed in (Dubois et al. 2020; Crosetto 

et al. 2020) 

 

(i) Description of the two studies 

Both studies used the same experimental designs by observing purchasing behaviour before and after the 

implementation of a labelling scheme (difference-in-difference approach) and using the same outcome 

measures (FSA score normalised by 100 kcal, Rayner et al., 2009). The natural field experiment included 60 

supermarkets in 4 French regions with 10 shops per system and 20 shops for control. The study lasted 10 weeks 

from 26 September to 4 December 2016. Consumers were informed about the local intervention in each 

treatment supermarket by leaflets and totems. In the labelling phase, 1266 products from four departments 

(Fresh prepared products, canned prepared products, pastries, industrial breads) were labelled with stickers. 

The coverage of the logos was between 45% and 75%, mainly of retailer branded products. The food purchases 

of 171,827 loyalty card holders were recorded. On the other hand, the framed field experiment took place on 

the experimental platform of the Grenoble Polytechnic Institute. The study included 51 sessions of 1h30 each 

from 21 November to 2 December 2016. 832 participants were invited to shop for their household over two 

days. They made their choice from a paper catalogue of 290 products. They had to perform this task twice, 

with and without the presence of a labelling system (All 290 products were then labelled). At the end of the 

session, they actually bought a quarter of their food basket. 

  

                                                      
2 In addition to the opponents of front-of-pack labelling, there were claims (mainly from supporters of labelling) that the tests would 
be biased, following an investigation by Le Monde that revealed conflicts of interest. 
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(ii) Results 

 
Figure 1. Variation the FSA score in the natural field experiment and in the framed field experiment according to labelling systems. 

Both studies resulted in the same ranking, with Nutri-Score being the most effective label, i.e. the one that 

generates the largest decrease in FSA score. However, the size of the effects of nutrition labels was on average 

17 times smaller in the natural field experiment than in the framed field experiment. 

 

(iii) Discussion 

When considering the potential causes of differences between laboratory and field studies, the literature 

generally points to the following five usual suspects: 

- The Hawthorne effect, i.e. the nature and extent of scrutiny of a person's actions by others. 

- The stakes of the decisions 

- The characteristics of the sample 

- The laboratory context, which may differ from the ecological context 

- The nature of the laboratory task, which may not perfectly replicate decisions made in the field. 

The first three arguments can be quickly dismissed. Both samples were aware that they were being scrutinised; 

both studies involved small stakes; the participants in both studies had similar key characteristics. Consumer 

attention, however, was very different. The framed field experiment examined two consecutive purchase 

decisions, whereas the natural field experiment examined multiple purchase decisions over several weeks. In 

addition, the logos were more visible in the catalogues of the laboratory study than on the shelves of the field 

study. Control generates saliency. 

Laboratory control comes at a cost. Due to the increased consumer attention, the laboratory clearly 

overestimates the impact of the intervention. This contradicts Herbst and Mas (2015) who found no 

quantitative difference. Is this difference in effect size significant? No, if the objective is to choose the "best" 

option. The magnifying glass effect allows the laboratory to better discriminate the impact of competing 

labelling schemes. Yes, if the objective is a cost-benefit analysis. Effect size is important when simulated results 

are used to assess future implications for society (e.g. in epidemiology). 

 

Natural field experiment Framed field experiment

1st. Nutri-Score

-0.142*

2nd. Nutri-Couleurs

-0.115

3rd. SENS

-0.062

4th. Nutri-Repère

-0.024

1st. Nutri-Score

-2.766***

2nd. Nutri-Couleurs

-1.513*

3rd. SENS

-1.140

4th. Nutri-Repère

-0.924

FSA 
variation
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3. QUASI-EXPERIMENTAL METHODS FOR EX-POST EVALUATIONS ON 

OBSERVATIONAL DATA 

Ex-post policy evaluations occur after the policy has been implemented and are based on the direct 

observation of the attribute/s of interest (i.e. no simulation is needed). Ex-post evaluations might occur under 

either an experimental setting or an observational setting, depending on the way the subjects are selected to 

be exposed to the policy (the data generating process). While an experimental setting can guarantee 

randomization into the policy (the data are generated by a random experiment), in an observational setting 

the exposure to the policy is beyond the control of the researcher who just observes the process as it takes 

place (the data are not generated by a randomized experiment). This latter scenario will be extensively 

explored in the present document.  

Ex-post impact evaluation consists in assessing the change in the attribute of interest (the outcome variable) 

caused by the policy (the treatment or intervention). The causal effect goes beyond the simple correlation 

between the exposure to the policy (the treatment status) and the outcome variable and consists in the 

difference between the outcome observed after the policy and what would have been observed without the 

policy. The latter represents the “counterfactual” outcome, a theoretical quantity not observable by nature. 

The counterfactual is the core of the so-called fundamental problem of evaluation (Heckman et al., 1999) which 

makes the treatment effect not observable itself in non-experimental settings. Quasi-experimental methods 

consist in econometric and statistical techniques used to estimate the counterfactual scenario when subjects 

are not randomly selected to the treatment. They are based on statistical strategies able to reproduce as 

closely as possible the desirable condition of randomized experiments where two groups are identical with 

respect to any factor except the probability of being exposed to the policy.  

While within experimental settings, randomization makes the control group a reasonable approximation of 

the counterfactual scenario, in observational settings, exposed and non-exposed subjects might systematically 

differ according to some factors, which in turn affect the outcome even in absence of the policy (the selection 

bias). This implies that the outcomes of the two groups would have been different even with no policy and the 

observed outcome differences after the policy implementation cannot be attributed exclusively to it. The 

magnitude of the selection bias depends on the selection process, which assigns some individuals of the 

population to the policy and not others. The potential outcome framework - variously attributed to Fisher 

(Fisher, 1935), Neyman (Neyman and Iwaszkiewicz, 1935), Roy (Roy, 1951), Quandt (Quandt, 1972), or Rubin 

(Rubin, 1974) - offers a straightforward formalization which reveals very helpful for depicting the main issues 

arising in policy evaluation due to the fundamental problem of evaluation and generally summarized in the 

selection bias problem.  

Each quasi-experimental method builds on a specific identification strategy, which directly follows from the 

policy design and the data availability and relies on specific assumptions. So that the same methodological 

approach might be useful in some practical setting and may fail in others.  

A structured report of quasi-experimental methods is provided in Appendix 1. Identification strategies, 

assumptions and data requirements of the most prominent quasi-experimental methods are illustrated and 

empirical discussion is provided with reference to two case studies: the soda tax implemented in Catalonia, 

Spain in May 2017 and the Cycling May campaign in Gdańsk, Poland.  



 

 

11 

The Catalonia Soda Tax (Case study 1) 

Catalonia is one of the 19 Autonomous Communities in Spain and has high levels of fiscal autonomy. The 

Catalan Parliament approved the Impuesto sobre Bebidas Azucaradas Envasadas (IBAE) in March 2017, which 

came into force in May 2017 (Law 5/2017). The declared aim of the tax is to levy Sugar Sweetened Beverages 

(SSBs) to reduce sugar consumption and the associated harmful effects on health, responding to the WHO 

recommendations. According to this law, the following beverages are taxable: sodas and soft drinks, industrial 

fruit juices or fruit nectars, sports drinks, drinks with coffee and tea, energetic drinks, sweetened milks, shakes 

and juices containing milk, plant-based beverages, flavouring waters. 

By law, retailers must fully pass-through the price increase due to the tax on to the final consumer. This should 

imply a 100% pass-through to the final prices borne by consumers.  

The tax rate depends on the sugar proportion of the drink: for drinks with 5 to 8 grams of sugar per 100 

millilitres, the tax amounts to 0.08 euros per litre, for drinks with more than 8 grams of sugar per 100 millilitres, 

the tax amounts to 0.12 euros per litre, drinks with less than 5 grams of sugar per 100 millilitres are exempt.   

No similar taxes have been enforced in the rest of the country. 

Available data: Data from four waves (2016-2019) of the National Spanish Household Budget Survey (HBS) 

provided by the Spanish National Statistics Office (INE) are available. The data include outcome observations 

before and after the tax entry into force for both the treated and the control regions. Regional Consumer Price 

Indices (CPIs) provided by INE are also used. According to the available data, the outcome variables can be 

measured as follows: 

• Price of taxed drinks are measured  

− as Regional Monthly CPIs (non-alcoholic drinks) 

− as average price paid per region and month, computed by averaging the price paid by each 

household (calculated as the ratio between expenditure and purchased quantity) across 

regions and months. 

• Purchase of taxed drinks measured as per capita annual purchased quantities.  

Cycling May (Case study 2) 

Cycling May is the name of a Polish public initiative aimed at increasing usage of bicycle, primarily directed to 

children. The campaign disseminates the idea that cycling is a fun and healthy mode of transport to reach 

school or kindergarten. The campaign was first enacted in May 2014 in the city of Gdańsk. In the following 

years, several Polish cities and municipalities adopted the initiative, reaching 47 involved municipalities in 

2019.  

1 Cycling May primary aim is to promote a healthy lifestyle and enhance active transport among pupils in 

schools and kindergartens, their parents, and teachers. The initiative is based on a competition – adopting 

a “gamification” approach – and includes elements of fun: each child and teacher receives a sticker every 

time that she cycles to school and there are final prizes for more active children, classes and schools. Each 

child has her own travel diary to keep track of bicycle trips, a class poster allows to record cumulative 

trips. Awards come in the form of bicycle gadgets for children, organised class excursions, or financial 

support for amelioration of schools’ cycling facilities. Aside from the competition, other activities carried 

out at school teach good and healthy transport habits. Interested primary schools and kindergartens must 

apply to participate to the initiative. 



 

 

12 

Available data: daily bicycle recording from bicycle counters located in a treated Polish city – Gdansk – and a 

control Polish city - Lodz - are available over a three-years period. The city of Gdansk is the capital of the 

Pomeranian province, a coastal province in northern Poland, where Cycling May was active. While Lodz is the 

capital of the homonym province, situated in central Poland, where Cycling May was not implemented. 

Number of daily bicycle recording at the counter level is available. 

The report is structured as follows. First, the potential outcome framework is briefly outlined to provide the 

basis for a formal discussion of the selection bias problem and the general conditions for identification of the 

policy effect. Then a structured discussion of quasi-experimental methods follows, where each evaluation 

method is explored in relation to the corresponding identification strategy and selection scenario. 
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APPENDIX 

 

Report on quasi-experimental methods 

 

Abstract/executive summary 

Ex-post evaluation methods are quasi-experimental in that they rely on observational data (where the exposure to the 

policy is beyond the control of the researcher) and use statistical strategies to reproduce the desirable conditions of a 

randomized experiment to estimate a counterfactual scenario (what would have happened in the absence of the policy) 

and ultimately the causal effect of the policy.  

Alternative statistical methods can be used to estimate the causal effect of the policy. Among them: the difference-in-

difference approach, synthetic control methods, regression discontinuity designs, model-based counterfactual 

estimations, instrumental variables approaches, propensity score matching. Each of them relies on specific strategies to 

identify the policy causal effect. 

In the quasi-experimental approach, the identification strategy is far from being a mere theoretical question and it follows 

directly from the policy design (which determine the details of the exposure to the policy) and the data availability. So 

that the same methodological approach might be useful in some practical setting and may fail in others. 

Identification strategy, assumption and data requirements of the most prominent quasi-experimental methods will be 

explored and empirical discussion will be provided with reference to two case studies.  

 
1. Examples and applications to Case Studies 

The present report consists in a structured not-too-technical discussion of quasi-experimental methods supplemented 

with examples and references. Applications of different methods and approaches to two Case Studies are shown, i.e. the 

Catalonia soda tax (Case Study 1) and the Cycling May Campaign in Poland (Case Study 2). 

With regard to Case Study 2: a structured discussion of the campaign and of the methods used for quasi-experimental 

evaluation are provided.  

With regard to applications to Case Study 1, datasets and Stata SE syntax to replicate the analyses are attached to this 

document. Data for the evaluation of the Catalonia soda tax come from four waves (2016-2019) of the National Spanish 

Household Budget Survey (HBS) and the Regional Consumer Price Indices (CPIs) provided by the Spanish National Statistics 

Office (INE). Using the available data and different quasi-experimental approaches we found the tax has significantly 

affected prices (causing a decrease in the price of taxed dinks, see details in the following sections) but it has not 

significantly affected purchased quantities of taxed drinks. For this reason, we decided to report examples referring to 

prices.  

1.1 Outcomes and datasets used for applications to Case Study 1 

The following outcomes are considered for impact evaluations: 

− Monthly Regional Consumer Price Indices (CPIs) for non-alcoholic drinks: no further detail in terms of type 

of drink (e.g. soft drink, energy drink, etc.) was available at the monthly/regional level. The index refers to 

all non-alcoholic beverages (all taxed and non-taxed drinks). 

− Price of drinks measured as average price paid per region and month. These are computed using household 

data from the HBS, by averaging the price paid by each household (i.e. the ratio between expenditure and 

purchased quantity) across regions and months. Higher detail in terms of items’ aggregation is available (see 

below) 

− Price paid for drinks (unit values): calculated as the ratio between household expenditure and household 

purchased quantity using household data from the HBS. 
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CPI.dta dataset: it contains Monthly Regional CPIs for non-alcoholic drinks recorded across 19 autonomous regions on a 

48-months-period (from January 2016 to December 2019). It also includes National CPIs for non-alcoholic drinks. It 

consists in 960 observations. Regional/monthly demographic characteristics are included. The latter have been calculated 

using HBS data by averaging household demographic characteristics across regions and months.  

PRICE.dta dataset: it contains average monthly/regional prices computed by averaging household prices paid per drink 

across regions and months. This procedure relies on the assumption that households in the same location and time period 

face the same price (Braha et al., 2017; Rahkovsky & Gregory, 2013). Similar procedures can be found in Colchero et al., 

2015 and Beatty, 2008. Regional/monthly demographic characteristics are included as above. Original household level 

information (price paid and demographics) come from the HBS. The HBS data show higher detail in item aggregations 

with respect to CPI data. The following scheme summarizes the available item disaggregation: 

- Non-alcoholic drinks: 

o Soft drinks 

o Energy drinks 

o Sport drinks 

o Juices 

o Water 

The HBS does not provide any information regarding the beverages’ sugar content. Thus, it is not possible to detect taxed 

(and untaxed) drinks with precision. The tax does not apply to artificially sweetened beverages (diet drinks) and 100% 

fruit juices. Moreover, different tax rates apply to beverages with different sugar proportions (for drinks with 5 to 8 grams 

of sugar per 100 ml, the tax amounts to 0.08 euros per litre, for drinks with more than 8 grams of sugar per 100 ml, the 

tax amounts to 0.12 euros per litre, drinks with less than 5 grams of sugar per 100 ml are exempt).  However, the greater 

detail allows to focus to specific drink categories.  

 
2. Ex-post policy evaluation in observational settings 

2.1 The potential outcome framework  

According to the potential outcome framework, being Yi the outcome variable of the i-th subject, every i-th subject has 

potentially two outcomes 𝑌𝑖
1 and 𝑌𝑖

0 having received or not the treatment. Depending on her treatment status (𝐷𝑖 = 1 if 

the subject received the treatment and 𝐷𝑖 = 0  if she did not) one of the two potential outcomes is observable and the 

other is hypothetical (counterfactual). 

 Factual Outcome Counterfactual Outcome 

Exposed to the policy (𝐷 = 1) 𝑌1 𝑌0 

Non-exposed to the policy (𝐷 = 0) 𝑌0 𝑌1 

 

The observable outcome of individual i is thus:  

 𝑌𝑖 = 𝑌𝑖
0 + 𝐷𝑖(𝑌𝑖

1 − 𝑌𝑖
0) 1 

and the causal effect of the treatment for the i-th subject is the (unobservable) difference 𝑌𝑖
1 − 𝑌𝑖

0 

It represents the outcome change that is totally attributable to switching from state 𝐷 = 0 (no treatment) to 𝐷 = 1 

(treatment). While it is logically defined for all members of the population of interest (irrespectively from their actual 

exposure to the policy) and free to vary across individuals (some population members benefit more from interventions, 

some other benefit less, some others might even be damaged by the intervention), though it is not observable 

(Fundamental Problem of Evaluation).  
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The same is true for the causal effect of the treatment at the population level. The average treatment effect computed 

over the treated population (ATT) is defined as follows: 

 𝐴𝑇𝑇 = 𝐸(𝑌1 − 𝑌0|𝐷 = 1) = 𝐸(𝑌1|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 1)  2 

and is not observable (due to its second term, 𝐸(𝑌0|𝐷 = 1), which is counterfactual). The ATT measures how much 

individuals exposed to the policy benefited on average from it and it is usually of major interest for policy makers.   

If the (unobservable) counterfactual average outcome for the treated, 𝐸(𝑌0|𝐷 = 1), is replaced with the (observable) 

factual outcome of the not treated, 𝐸(𝑌0|𝐷 = 0), the resulting difference returns a biased estimate of ATT: 

 𝐸(𝑌1|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 0) = 𝐴𝑇𝑇 + 𝐸(𝑌0|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 0) 3 

where 𝐸(𝑌0|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 0) represent the selection bias and summarizes the outcome difference between 

participants and non-participants if the policy was not implemented. It captures outcome differences that cannot be 

attributed to the policy and represents a bias to the identification of the ATT using only observable quantities. 

2.2 Selection bias, randomization, and the selection process 

The magnitude of the selection bias depends on the selection process (i.e. assignment mechanism) which consists of the 

set of rules according to which some members of the population are exposed to the policy while some others are not. 

Assuming that the probability to be exposed to the policy depends on a set of characteristics X (of individuals or of the 

context in which the intervention takes place), if X are unequally distributed among exposed and non-exposed subjects 

and in turn affect the outcome variable, the selection bias arises. This implies that the outcomes of the two groups would 

have been different even in the absence of the policy and the observed outcome differences after policy implementation 

cannot be attributed exclusively to the policy. 

The selection bias strictly depends on the rules which determine the exposure to the policy and assign subjects to the 

treated or control group (selection process). In fact, if subjects were assigned to one of the two groups randomly, both 

observable and unobservable factors would distribute similarly in the two groups and no bias would arise. Let D, the 

binary treatment state, be a deterministic function of the triple (X, U, Z), where: 

• X is a set of observable characteristics of the units, unaffected by the intervention, possibly correlated to 𝑌0 

• U are unobservable characteristics of the units, unaffected by the intervention, possibly correlated to 𝑌0 

• Z is the observable binary outcome of a random draw (i.e., it is independent of 𝑌0) 

𝐷(𝑋, 𝑈, 𝑍) represents the selection process. 

In econometric terms the selection bias is caused by the endogeneity of the treatment status. Being the observed 

individual outcome (𝑌) a function of the treatment status (𝐷), a set of observable individual characteristics (𝑿) and a set 

of unobservable individual characteristics (𝑼): 

 𝑌 = 𝑓(𝐷, 𝑿, 𝑼) 4 

if some attributes of i (observable or not) simultaneously affect 𝐷 and 𝑌, the estimate of the average treatment effect 

obtained by comparing treated and not treated subjects (i.e. the coefficient of 𝐷 in a multiple regression framework) is 

affected by selection bias. 

Quasi-experimental methods aim at reproducing as closely as possible the key feature of the experimental design: having 

two groups equivalent in all respects but different with regard to the probability of being exposed to the treatment. Each 

quasi-experimental method builds on a specific identification strategy which is the way observational data can be used to 

approximate an experiment.  
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3. Selection to treatment: a taxonomy  

The ability to estimate the impact of an intervention depends on the correct identification of the selection process. In 

general, three alternative scenarios arise and given the general setup and notation proposed in previous sections, they 

are summarized as: 

- units are randomly assigned to the treatment and control group: random assignment (𝐷(𝑍) represents the 

selection process) 

- treated and control units differ only with respect to some observable characteristics (𝑋) which in turn affect the 

outcome: selection on observables (𝐷(𝑋) represents the selection process) 

- treated and control units differ with respect to some unobservable characteristics (𝑈) which in turn affect the 

outcome: selection on observables: selection on unobservables (𝐷(𝑈) represents the selection process) 

Even if the selection process strictly depends on the policy structure and its implementation rules, it also depends on data 

availability. For example, subjects might be exposed to a treatment according to a set of observable characteristics, but 

no data on those characteristics are available. Thus, the selection is on observables in principles, but the researcher faces 

a selection on unobservables in practice. 

Whether a given selection process can be reasonably assumed for a given treatment requires a case-by-case assessment 

and ultimately is up to the researcher.  

In each of the above scenario, the treatment effect can be identified with specific methods, which might require additional 

assumptions to return an unbiased estimate of the effect. They will be discussed in what follows.  

3.1 Randomized assignment 

D(X, U, Z) = Z  

When units are assigned randomly to treatment and control group, both observable and unobservable factors are 

distributed similarly in the two groups, which are equal in expectations. Un unbiased estimate of the treatment effect is 

obtained by comparing the average outcomes across the treatment and control groups: 

 𝐸(𝑌1 | 𝐷 = 1)  −  𝐸(𝑌0 | 𝐷 =  0)  =  𝐴𝑇𝑇 5 

Under this scenario, the ATT equals the Average Treatment Effect (ATE), which is the average effect over the entire sample 

(treated and untreated units).  

3.2 Selection on observables 

D(X, U, Z)  =  D(X) 

If treated and control individuals differ only with respect to some observable characteristics (𝑋) which in turn affect the 

outcome, a proper estimate of ATT can be obtained by simply controlling for those attributes. As a result, the composition 

of the two groups is made equivalent with respect to the characteristics affecting the outcomes. This can be obtained 

parametrically (with regression models) or not (with matching techniques), but always requires common support, i.e. for 

all the possible values of the covariates both treated and no treated units have to be observed.  

The condition of selection on observables is also known as unconfoundedness, conditional independence assumption 

(CIA), or ignorable assignment mechanism. Under the potential outcome notation, given a set of observable covariates 

𝑋, the potential outcomes are independent of the treatment status: 

 𝐷𝑖 ⊥ (𝑌𝑖
0)|𝑋𝑖  

6 
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Assumption: selection on observables: all the factors relevant to the outcome and entering the selection process are 

observable (i.e. the uptake of the program is based entirely on observed characteristics) 

Strategy:  controlling for the observable attributes affecting the selection process. As a result, the composition of the two 

groups is made equivalent with respect to the characteristics affecting the outcomes. Once all the observable relevant 

attributes are controlled for, there are no systematic differences across the treatment and control groups. 

Data requirements: post-policy data including measures of the outcome variable for treated and untreated units and a 

proper set of relevant characteristics (affecting the outcome and the selection process). 

Quasi-experimental methods: multiple regression, matching techniques.  

When applying these methods under a selection of observable scenario, the researcher should pay attention to the risk 

of using extrapolations to compare incomparable people. To properly identify the causal effect of the treatment, treated 

and untreated units need to share the same support3 (common support condition) with regard to 𝑋 (see Figure 1).  There 

is a trade off in the number of observable covariates to use. In fact, the larger the set of reasonable 𝑋 variables, the more 

likely to have zero selection bias, however, as the number of 𝑋 increases, the common support condition may be violated. 

Suppose you are interested in assessing the impact of nutrition labels on the quality of diet of consumers. Label readers 

(the treated group) and label non-readers (non-treated group) systematically differ according to their health orientation, 

which in turns affect their quality of diet. Suppose you can measure health orientation for the two groups of consumers. 

Controlling for health-orientation before comparing the diet quality in the two groups is not enough if it is done out of 

the common support region.  

 

 

Figure 1 Common support when comparing nutrition labels readers and non-readers  

 
  

                                                      
3 The support of a random variable is the set of realizations that occur with positive probability. 
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3.2.1 Multiple regression models 

Under the hypothesis that all the factors affecting the outcome and entering the selection process are observable 

(selection on observables), the outcome model for observational data can be written as: 

 𝑦𝑖 = 𝛼 + 𝛽𝐷𝑖 + 𝛾𝒙𝑖 + 𝜀𝑖 7 

where 𝑦𝑖  is the outcome for the i-th unit, 𝐷𝑖  is a binary indicator (the policy dummy) which is equal to 1 when the i-th unit 

is exposed to the policy and 0 otherwise, 𝒙𝒊 is a vector of observed characteristics of the i-th unit and 𝛽 returns a 

consistent estimate of the ATT. If the assumption of selection on observable holds, the above model can be simply 

estimated on a cross-section of units observed in a single time period after the policy implementation (no need for pre-

policy data). 

Application 1. Estimating the effect of the Catalonia soda tax on CPIs using a multiple regression 

Dataset: CPI.dta, consists in 912 observations: CPIs for non-alcoholic drinks, recorded for 19 autonomous regions on a 

48-months-period (from January 2016 to December 2019). Only post-policy observations are used (tot. 380). 

Outcome/s: CPIs for non-alcoholic drinks 

Treated unit/s: Catalonia  

Control unit/s: remaining 18 autonomous regions  

Assumption/s: selection on observables. All the factors affecting the outcome and entering the selection process are 

observable (i.e. treated and control regions differ only according to observable characteristics). 

Strategy: estimate the ATT using a multiple linear regression on post-policy data to control for observable characteristics. 

 𝐶𝑃𝐼𝑖 = 𝛼 + ∑𝛽𝑘𝑥𝑘𝑖 + 𝛾𝐷𝑖 + 𝑢𝑖  8 

Where 𝑥𝑘𝑖  is a vector of k observable characteristics for the i-th region, 𝐷𝑖 is the policy dummy which equals 1 for Catalonia 

and 0 for the remaining control regions and 𝑢𝑖is the idiosyncratic error term. 

Under the assumption of selection on observable, 𝛾 yields an unbiased estimate of the ATT of the tax.  
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Table 2 Estimated impact on CPIs. Multiple regression output on post-policy data. 

 Monthly CPI (non-alcoholic drinks) 

  
Policy dummy (=1 Catalonya, = rest of the country) 6.045*** 
 (0.454) 
Household size -0.503 
 (0.447) 
One-person household 8.381*** 
 (2.560) 
One parent with children less than 16 y.o. 9.464*** 
 (3.321) 
One parent with children older than 16 -0.239 
 (2.415) 
Couple without children 9.210*** 
 (2.173) 
Couple with children less than 16 y.o. 3.612* 
 (1.954) 
Couple with children older than 16 1.708 
 (2.035) 
Age of the household reference person -0.030 
 (0.043) 
Education level 1 1.818* 
 (1.043) 
Education level 2 2.839*** 
 (1.088) 
Education level 3 0.535 
 (1.427) 
Pensioner-only household -0.760 
 (1.307) 
Constant 98.585*** 
 (3.710) 
  
Observations 608 
R-squared 0.352 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Application 2. Estimating the effect of the Catalonia soda tax on prices of different drink categories using a multiple 

regression 

Dataset: PRICE.dta, consists in 912 observations: 19 autonomous regions on a 48-months-period (from January 2016 to 

December 2019). Only post-policy observations are used (tot. 380). 

Outcome/s: Price of all non-alcoholic drinks, price of non-alcoholic soft-drinks, price of energy drinks, price of sport drinks, 

price of juices. 

Treated unit/s: Catalonia  

Control unit/s: remaining 18 autonomous regions  

Assumption/s: selection on observables. All the factors affecting the outcome and entering the selection process are 

observable (i.e. treated and control regions differ only according to observable characteristics). 

Strategy: estimate the ATT using a multiple linear regression on post-policy data to control for observable characteristics. 

 𝑃𝑟𝑖𝑐𝑒𝑖𝑗 = 𝛼 + ∑𝛽𝑘𝑥𝑘𝑖 + 𝛾𝐷𝑖 + 𝑢𝑖  9 

Where 𝑃𝑟𝑖𝑐𝑒𝑖𝑗  is the price of the k-th beverage, 𝑥𝑘𝑖  is a vector of k observable characteristics for the i-th region, 𝐷𝑖 is the 

policy dummy which equals 1 for Catalonia and 0 for the remaining control regions and 𝑢𝑖is the idiosyncratic error term. 
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Under the assumption of selection on observable, 𝛾 yields an unbiased estimate of the ATT of the tax on the price of the 

k-th drink. 

Table 3 Estimated impact on the price of different drink categories. Multiple regression output on post-policy data.  

 PRICE (All non-
alcoholic drinks) 

PRICE  
(Soft-drinks) 

PRICE  
(Energy drinks) 

PRICE  
(Sport drinks) 

PRICE 
(Juice) 

      
Policy dummy (=1 Catalunya, 
= rest of the country) 

-0.0474 0.104** -0.0895 0.0255 0.122** 

 (0.0369) (0.0409) (0.205) (0.104) (0.0560) 
Household size 0.00315 -0.0809** -0.335 0.299 0.103* 
 (0.0350) (0.0392) (0.345) (0.188) (0.0548) 
One-person household 0.275 0.0343 -3.520** 1.315 0.764** 
 (0.208) (0.231) (1.684) (0.852) (0.318) 
One parent with children less 
than 16 y.o. 

0.208 0.732** 0.0303 2.346** 0.268 

 (0.284) (0.315) (2.322) (1.060) (0.432) 
One parent with children 
older than 16 

1.104*** 0.637*** -1.733 0.256 0.205 

 (0.191) (0.212) (1.708) (0.808) (0.330) 
Couple without children 0.206 -0.0461 -2.812** 0.961 0.743*** 
 (0.180) (0.200) (1.382) (0.708) (0.280) 
Couple with children less 
than 16 y.o. 

0.272* 0.112 -1.516 0.594 0.422* 

 (0.154) (0.174) (1.147) (0.556) (0.235) 
Couple with children older 
than 16 

0.195 0.0741 -2.003 1.381** 0.748*** 

 (0.166) (0.184) (1.344) (0.673) (0.253) 
Age of the household 
reference person 

-0.000878 0.00116 -0.0207 0.000220 0.00458 

 (0.00376) (0.00417) (0.0287) (0.0133) (0.00582) 
Education level 1 -0.354*** -0.338*** -1.649** -0.121 -

0.809*** 
 (0.0881) (0.0977) (0.692) (0.333) (0.140) 
Education level 2 -0.556*** -0.420*** -0.318 0.447 -

0.515*** 
 (0.0854) (0.0946) (0.616) (0.274) (0.135) 
Education level 3 -0.202* -0.139 -0.728 0.137 -0.358* 
 (0.122) (0.137) (0.813) (0.414) (0.186) 
Pensioner-only household 0.114 0.103 0.721 0.241 0.352** 
 (0.102) (0.114) (0.789) (0.389) (0.163) 
Constant 0.564* 1.186*** 6.732*** -0.559 0.311 
 (0.304) (0.339) (2.503) (1.194) (0.470) 
      
Observations 380 379 296 339 378 
R-squared 0.236 0.219 0.055 0.055 0.194 
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3.2.2 Matching methods 

The class of methods based on matching – propensity score matching (PSM) in particular– has been popular in health 

sciences, but it is hardly useful without combining it with other quasi-experimental methods. In fact, an effective matching 

requires full knowledge of the structural model determining outcomes, or full information about the selection process. 

However, in such situation one could simply obtain the ATT using an OLS regression model as in equation 7Fehler! 

Verweisquelle konnte nicht gefunden werden.. Not only, but authoritative recent studies have emphasized that 

improper application of PSM could lead to the opposite (and highly undesirable) result of increasing unbalances in 

unobservables, and lead to larger biases (King & Nielsen, 2019) . 

Nevertheless, PSM is widely used, probably because it is an intuitive and relatively easy to teach method, and statistical 

packages offer fast implementation algorithms. Technical details can be found in Caliendo and Kopeinig 2008. PSM aims 

at balancing the distribution – or at least the means – of observables between the treated and the control samples. It 

does so by working on the control sample, by dropping observations, or by applying weights. For example, an observation 

in the treatment group can be matched with a single observation in the control group, or with a weighted average of 

observations from the control group. How this matching is accomplished depends on the matching algorithm, and there 

are many variants: nearest neighbour, radius, kernel and stratification matching being those most commonly 

implemented. The idea is that rather than matching on the full set of observable variables 𝐱 (affecting the outcome and 

the selection process), a synthetic function of these variables is used, the propensity score. A propensity score is the 

probability of a unit to end up in the treatment group given its observed characteristics 𝐱, and can be easily estimated via 

a probit or logit model. Matching on the probabilities estimated through these models is easier and more feasible than 

attempting to match all individual characteristics.  

The assumption of unconfoundedness – which requires that no relevant unobservable exists – cannot be tested directly. 

However, propensity scores are based on the estimation of a binary dependent variable model, and goodness-of-fit 

measures for that model, e.g. the Pseudo-R2 or the rate of correct predictions, provide relevant feedback. Even if we find 

that most of the covariates are relevant (significant) in explaining the assignment-to-treatment process, low goodness-

of-fit diagnostics signal that our observables are not enough, and the unconfoundedness assumption is not credible. More 

sophisticated testing strategies exist, as the Rosenbaum bounds or IV-based tests (see DiPrete & Gangl, 2004), but one 

should be wary of any PSM studies that does not provide strong evidence that the unconfoundedness assumption is met, 

as ATT estimates may otherwise be affected by a large bias. 

Beyond this, PSM requires overlapping of the propensity scores ranges between the treatment and control group. In a 

non-random setting we are likely to find higher propensity scores in the target group, and some of them might be too 

high to find the right match in the control group. In that case, unmatchable observations are dropped from the target 

group, which means that the estimated ATT does not refer to the original treated sample, but to the reduced one. This 

might become a major limitation for the ATT estimate. Imagine that in a voluntary food assistance the poorest individuals 

are very likely to participate, hence have very high propensity scores, but they are not accounted in the ATT estimate 

because no adequate match is found. Then, the ATT will measure the impact of the policy on a population which excludes 

those who benefit the most.  

Relative to other methods, PSM evaluations are less popular in nutrition policy analysis, but several applications can be 

found in the literature. Clark & Fox, 2009 apply matching methods to investigate the impact of the US School Breakfast 

and National School Lunch Programs on vitamin, mineral and sodium intakes. The method seems to be more popular 

among development economists, for example Abebaw et al., 2010 use PSM to estimate the effects of a food security 

program in Northwestern Ethiopia.  
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3.3 Special case of selection on observables: deterministic assignment rule 

D(X, U, Z)  =  D(X)  

In some special cases there is an observable deterministic rule assigning subjects to the treatment. Typically, this is the 

case when the selection process is driven by administrative rules, e.g.:  

 𝐷𝑖 = 𝐼(𝑥𝑖 > 𝑥0 )   10 

where individuals whose attribute 𝑥𝑖  is higher than a threshold level 𝑥0 participate to the intervention (e.g. people are 

exposed to the policy if they are older than 14, as for the French vending machine ban, see Capacci, Mazzocchi, and 

Shankar (2018). Units just on the right of the threshold 𝑥0 and units just on the left of it are equivalent with respect to 𝑥 

(provided 𝑥 is the only variable driving the selection process, continuity condition) and any other characteristic whether 

observable or not. Thus, comparing the two groups around the threshold gives a good estimate of the average treatment 

effect for the treated people since around the threshold the assignment to treatment is as good as random (the two 

groups are approximately equivalent with respect to all the characteristics relevant for the outcome) 

Assumptions: selection on observables and continuity assumption. When the continuity assumption holds, the potential 

outcome is a continuous function of the assignment variable 𝑥, so that the policy is the only factor affecting the continuity 

of the outcome function around the threshold.  

Strategy: comparing treated and untreated units around the threshold, where thanks to the continuity assumption, the 

assignment to treatment is as good as random (the two groups are approximately equivalent with respect to all the 

characteristics relevant for the outcome). 

Quasi-experimental methods: Regression Discontinuity Designs (RDD), sharp/fuzzy 

Limitations and caveats: this approach to impact estimation suffer from potentially poor external validity. In fact, 

individuals close to the threshold 𝑥0 might not be representative of the wider population. 

 

3.3.1 Regression Discontinuity Designs 

For some specific policies, eligibility depends on the threshold value for a single continuous variable. Typical examples are 

policies designed around an administrative eligibility criterion based on age or income thresholds to allow access to food 

assistance programs or other subsidies. When such a sharp classification exists and the variable is known, the division 

between target and control units is straightforward. As this variable is most likely to be a key determinant for the outcome 

of interest, this also implies that there is no overlapping and two sub-population are hardly comparable. 

In these cases, restricting the analysis to those units that are just below or just above the threshold is a potential solution. 

With a very large sample, the researcher might have a sufficient number of observations even after restricting the dataset. 

For example, if a policy is targeting subjects aged below 30, and we have a large data set including individuals within 6 

months from their 30th birthday, the resulting sample is relatively homogeneous in terms of age, and splitting the sample 

in two groups through the date of birth is similar to randomized assignment, and one should not expect major selection 

biases. A mere mean comparison test between the average outcomes could be a quite good estimate of the ATT.  

However, one major caveat accompanies this estimate of the treatment effect, which is certainly valid in the selected 

neighbourhood of the cut-off point, but not necessarily for data points further away. In our example, we may get good 

and reliable estimates of the ATT for those aged 30, but we can say little about the policy effects on those that are aged 

20 or 25 relative to those aged 35 or 40. Thus, ATTs estimated through RDD are characterized by limited external validity. 

Furthermore, this threshold analysis commonly runs into two major issues: (1) the number of available observations 

around the cut-off value is not large; (2) the cut-off point may be associated with a number of confounding events creating 

discontinuities. For example, if the age cut-off is also the retirement age (e.g. 65), one may think that such an event 

creates relevant disparities between the target and control groups in variables that may in turn affect the outcome 

variable.  
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The first problem is addressed by relying on the functional relationship between the outcome and the assignment 

(running) variable. When such function is identifiable, it can be exploited to expand the sample of interest. To do that, we 

need to assume continuity, which means that without the policy the outcome would just follow the identified functional 

relationship with the running variable. The most basic functional form is a simple bivariate linear regression, and the 

policy impact would be captured by a sharp shift in the intercept as the running variable reaches the cut-off point. By 

exploiting this linear relationship, one is able to expand the sample and consider units that are further away from the 

threshold. This brings in a second assumption, linearity, which requires that the linear relationship is valid within the 

expanded neighbourhood of the cut-off point. Although few relationships between the outcome and the running variable 

are indeed linear, when the neighbourhood under consideration is still relatively small, then the linear approximation 

performs well and the ATT estimate becomes more credible (and efficient) for the sample of interest. In other words, its 

internal validity is higher. Clearly this introduces a trade-off between internal validity and efficiency. If we use a large 

neighbourhood, we have more observations and a more efficient estimate of the ATT. However, observations are more 

heterogeneous, the linearity assumption becomes more influential, and there is less internal validity.  

RDD deals well with unobservables when these are unlikely to differ substantially between the two groups within a small 

neighbourhood of the cut-off point. However, the crucial continuity assumption implies that there are no other major 

“jumps” in relevant outcome determinants at the same cut-off point. There are cases when this assumption is clearly 

challenged, for example when the cut-off value is one with administrative and legal relevance. For example, age cut-offs 

at 18 and 65 are common to several economic and health policy measures, or some income eligibility threshold levels can 

be similar across different policies in the same country, which complicates the attribution of the causal effect to a specific 

policy. In such cases, the only viable solution seems to be the inclusion in the model of covariates which help to control 

the confounding effects (Frölich & Huber, 2019). More generally, one should test whether the continuity assumption 

holds simply by applying the same RDD model on relevant confounding factors, and expecting not to find significant 

discontinuities. One key reason why the continuity assumption fails to hold is when subjects have some control on the 

assignment variable. For example, one might delay some revenue (job offer) to maintain eligibility for a program based 

on income thresholds. If these behaviours (“bunching”) are possible, then the continuity assumption is challenged and 

RDD becomes less credible4. 

Since the estimation of causal effects through RDD depends on assumption on the neighbourhood size and the shape of 

the relationship between the outcome and the running variable, a number of extensions and variants in the estimation 

procedures exist. First, the optimal size of the window around the cut-off point (the bandwidth) may be also an output of 

the estimation algorithm. Second, non-parametric regressions allow to relax the assumption of a linear relationship, and 

place different weights on observations depending on how far they are from the cut-off point. Third, when the running 

variable does not determine a sharp cut-off (i.e. all individuals meeting the rule are treated), but only creates a shift in 

the probability to be treated, then fuzzy RDD better serves for the purpose. This is the case of voluntary policies, where 

not all eligible individuals are exposed, and/or when there are exception allowing participation of subjects that do not 

meet the cut-off eligibility requirement. 

Including covariates, changing the bandwidth, allowing for non-linear relationships, or opting for a fuzzy design are all 

choices that may potentially lead to different result, which is why convincing robustness checks are not an optional feature 

for RDD studies. On the one hand, one may want to show that the estimate of the causal effect is relatively consistent 

across different choices. On the other hand, falsification tests add credibility to the identification strategy. For example, 

one may want to show that different cut-off points other than the one relevant to the analysis are not associated with 

discontinuities.  

Although the range of policies that are suitable to this method is limited, and the aforementioned external validity caveat 

applies, RDD is considered a relatively powerful causal identification method. Sometime researchers have expanded the 

scope of RDD by considering time as the assignment variable with panel or time series data (see e.g. Aguilar et al. 2021) . 

In these exercises, the idea is that comparing outcome just before and after the time of the policy implementation, while 

exploiting some outcome-time relationship, may lead to the identification of the policy causal effect. However, this also 

                                                      
4 Interestingly, this opens the way to relevant behavioral evaluations and estimation which exploit the possibility to identify 
manipulation (see Kleven 2016). 
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leads to major differences in the requirements for successful identification relative to the standard RDD method, an issue 

which deserves careful consideration before one chooses “time” RDD over simpler event study models (Hausman & 

Rapson, 2018). 

Examples of RDD application to nutrition policies include the income-eligibility rule for the US School Lunch Program 

(Schanzenbach, 2009), the removal of vending machines from secondary schools in France (Capacci et al., 2018), the 

impact on nutrition and wellbeing of a new refugee assistance program in Kenya (MacPherson & Sterck, 2021) , and the 

effects of microcredit on children nutrition in China (You, 2013).  

3.4 Selection on unobservables and time invariant selection bias 

D(X, U, Z)  =  D(U), with U dependent on Y0, but U independent of the variation of Y0 over time. 

Very often the variables responsible for the selection bias are not observable. The treated and not treated subjects might 

differ for some latent (or simply not-observed) attributes which might affect their responsiveness to the treatment. For 

example, this might occur when units self-select to the intervention (See nutrition labels use). In this case those latent 

variables (as motivation) affecting participation might also be responsible for specific levels of the potential outcome of 

treated subjects and emphasize the effect of the treatment. Yet, if the outcome is a repeatable event, observed before 

and after the intervention, and it can be reasonably assumed that the difference between the treated and control group 

is stable in time (common or parallel trend assumption), the Difference in Differences (DID) strategy can neutralize the 

effect of the bias caused by unobservable heterogeneity. This is one of the most exploited quasi-experimental strategies 

for the evaluation of public interventions in non-experimental setting and consists in comparing the outcome of treated 

and untreated subjects before and after the treatment (difference in differences). 

Assumption: those factors affecting the selectin process are not observable (or observed) but the outcome difference 

between treated and control subjects in absence of the treatment (i.e. the selection bias, (𝒀𝟎│𝑫 = 𝟎) − 𝑬(𝒀𝟎 |𝑫 = 𝟏)) 

is time invariant. This is known as parallel (or common) trend condition (see Figure 2). 

 

 
Figure 2 Parallel trend assumption in the DID framework: the selection bias is stable over time 
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Strategy: the difference between the change over time (post policy vs pre policy) for the treated subjects and the change 

over time (post policy vs pre policy) for the untreated subjects retrieves an unbiased estimate of the ATT. 

Data requirements: the outcome 𝒀 is a repeatable event and it is observed both before and after the intervention for 

participants and non-participants. Both multiple cross-sections (the composition of the two group changes in different 

time periods) and panel data can be used.  

Quasi-experimental method:  DID multiple regression for multiple-cross sections, DID panel data models 

Application 3. Estimating the effect of the Catalonia soda tax on CPIs, using a DID approach and assuming common trend 

Dataset: CPI.dta, consists in 912 observations: CPIs for non-alcoholic drinks, recorded for 19 autonomous regions on a 

48-months-period (from January 2016 to December 2019).  

Outcome: CPIs for non-alcoholic drinks 

Treated unit/s: Catalonia  

Control unit/s: remaining 18 autonomous regions  

Strategy: the difference between the average observed change over time for the treated and the average observed 

change over time for the controls retrieves the ATT. This can be simply obtained by calculating four averages, as in Table 

4, where the difference in differences is reported in bold (6.13 represents the estimated increase in CPIs, due to the tax, 

under the assumption of common trend). 

Table 4 Observed average CPIs for non-alcoholic drinks in Catalonia and control regions, calculated before and after the tax. 

  
Treated region 

(Catalonia) 
Control region 

(All other regions) 
Treated-control 

Pre tax 100.00 99.89 0.10 

Post tax 108.17 101.94 6.23 

Post-pre 8.17 2.04 6.13 

 

The same point estimate of the ATT under the DID framework is easily obtained by estimating the following regression 

model: 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑝𝑜𝑠𝑡𝑖 + 𝛽2𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖 + 𝛾 𝑝𝑜𝑠𝑡𝑖 ∗ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖 + 𝑢 11 

where 𝑦𝑖  is the outcome for the i-th observation, 𝑝𝑜𝑠𝑡𝑖 is a binary variable=1 if i is observed after the policy, 𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖  is 

a binary variable=1 if i is exposed to the policy (the policy dummy) and 𝛾 – the coefficient of the interaction term (𝑝𝑜𝑠𝑡 ∗

𝑡𝑟𝑒𝑎𝑡𝑒𝑑) – retrieves an unbiased estimate of ATT. The regression outputs quickly return the standard error of the 

estimated ATT. 

The minimum data requirement for a DID estimation is two cross-sections (observed before and after the policy 

introduction) of treated and control units. However, potential differences in the composition of the treated and control 

groups might work against the reliability of the common trend assumption. If a panel dataset is available, the DID model 

can be rearranged as follows: 

 𝑦𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝜹𝑇𝑖𝑡 + 𝜂𝑖𝑡 12 

where 𝑦𝑖𝑡 is the outcome observed for unit 𝑖 at time 𝑡,𝛼𝑖  and 𝜆𝑡 are individual and time fixed effects, 𝑇𝑖𝑡  is a binary 

variable=1 for treated units observed after the introduction of the treatment and 𝜹 returns the estimated ATT. Units and 

time fixed-effects capture constant outcome differences across units and temporal changes in the outcome that are 

common to all units. For this reason, they replace the single 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 and 𝑝𝑜𝑠𝑡 dummies respectively. The model can be 

estimated introducing a set of dummies indicating each time period in the sample and a set of dummies for every unit in 

the sample. 
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We apply the standard DID approach and exploit the longitudinal structure of the data to obtain an estimate of the causal 

effect of the tax on CPIs, assuming common trend and controlling for potential seasonal effects: 

 𝐶𝑃𝐼𝑖𝑡 = α0 + ∑ 𝛾𝑖

𝑖

𝑑. 𝑟𝑒𝑔𝑖𝑜𝑛𝑖 + ∑ 𝛽𝑡𝑑. 𝑚𝑜𝑛𝑡ℎ𝑡

𝑡

+ 𝛿𝑇𝑖𝑡 + 𝜽𝑖𝑡 + 𝜂𝑖𝑡 13 

where 𝐶𝑃𝐼𝑖𝑡 is the CPI for the 𝑖-th region in 𝑡-th month, ∑ 𝑑. 𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑖  is a set of dummy for every region in the sample 

(except one, to escape the dummy trap), ∑ 𝑑. 𝑚𝑜𝑛𝑡ℎ𝑡𝑡  is a set of dummy for every month in the sample (except one), 𝑇𝑖𝑡  

is a binary variable=1 for Catalonia CPIs registered after May 2017 and 𝜽𝑖𝑡 are quarterly dummies to capture seasonal 

effects. The two sets of regional and monthly indicators control for regional and monthly fixed effects, respectively. 𝛿 

returns the estimated ATT. In order to estimate 𝛿, Equation 13 is equivalent to the following model: 

 𝐶𝑃𝐼𝑖𝑡 = α0 + 𝛼1𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + 𝛼2𝑝𝑜𝑠𝑡𝑡 + 𝛿𝑇𝑖𝑡 + 𝜽𝑖𝑡 + 𝜂𝑖𝑡 14 

where regional and monthly fixed effects are replaced by the policy dummy 𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖  (which equals 1 for Catalonia and 

0 for the remaining regions) and 𝑝𝑜𝑠𝑡𝑡(which equals 1 when the CPI is observed after May 2017 and 0 otherwise), and 𝑇𝑖𝑡  

is in fact equivalent to the interaction term 𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖 ∗ 𝑝𝑜𝑠𝑡𝑡.  Table 5 shows the regression output, with the estimated 

impact on CPIs in bold.  

Table 5 DID estimate of the effect of the Catalonia tax on CPIs using a regression model with fixed effects and quarterly dummies to 
control for seasonality, common trend assumed. 

 Monthly CPI  
(non-alcoholic drinks) 

County fixed effects:  
Aragona -0.738*** 

 (0.266) 
Asturias -1.145*** 

 (0.266) 
Balearic 2.902*** 

 (0.266) 
Canary 0.0741 

 (0.266) 
…  

Dummy for quarter=2 3.359*** 
 (0.423) 
Dummy for quarter=3 3.392*** 
 (0.423) 
Dummy for quarter=4 3.329*** 
 (0.423) 
Month fixed effects:  

Month_id=2 0.265 
 (0.422) 

Month_id=3 0.536 
 (0.422) 

Month_id=4 -2.900*** 
 (0.423) 

Month_id= 5 -2.878*** 
 (0.423) 

…  
Interaction term: treated*post 6.130*** 
 (0.409) 
Constant 99.83*** 
 (0.350) 
  
Observations 912 
R-squared 0.794 
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3.4.1 Is the selection bias time invariant? Testing the common trend assumption 

The common trend assumption is crucial under the DID approach and requires that the difference in the outcome 

between treated and control units with no treatment (the selection bias) is time invariant. When the available sample 

consists in multiple units observed over multiple time periods. It is possible to investigate outcomes’ time trends among 

the treated and control groups and provide evidence on the appropriateness (or not) of the common trend assumption. 

In the present section, we discuss three possible strategies to do so. 

A fist strategy to test whether the common trend assumption holds is to estimate a pre-policy model including a trend 

variable interacted with the policy dummy. This allows to check whether before the policy introduction a systematic 

difference in trends exists between treated and control units. The model can be specified as follows: 

 𝑦𝑖𝑡 = 𝛼0 + 𝛼1𝑡𝑟𝑒𝑛𝑑𝑡 + 𝛼2𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + α3𝑡𝑟𝑒𝑛𝑑t ∗ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + uit 15 

where 𝑦𝑖𝑡  is the outcome observed for the i-th unit at time t before the policy introduction, 𝑡𝑟𝑒𝑛𝑑 represents a linear 

time trend, 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 is the policy dummy (=1 if the unit belongs to the treatment group and =0 otherwise) and 𝛼3 returns 

an estimate of the expected difference in the linear trend between the treated and the control group before the policy 

was implemented.  

A second strategy consists in the visual inspection of the data. By plotting average outcomes for treated and control units 

against time it is possible to get a sense of whether the common trend assumption is plausible or not.  

A third strategy consists in estimating a model for the outcome variable over the entire sample of observations (pre and 

post) against a full set of time dummies interacted with the policy dummy:  

 𝑦𝑖𝑡 = 𝛼0 + ∑𝛾𝑘𝑑. 𝑡𝑖𝑚𝑒𝑘 + ∑𝛽𝑘𝑑. 𝑡𝑖𝑚𝑒𝑘𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖 + 𝑢𝑖𝑡 16 

where 𝑑. 𝑡𝑖𝑚𝑒𝑘 is a dummy for the k-th time period and 𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖  is the usual policy indicator for the i-th unit. The 

coefficients of the k interaction terms will tell if systematic differences in time fixed effects exist between treated and 

control units. 

All the above strategies are applied to the Catalonia case study in the following section. 

Application 4. Testing the common trend assumption for CPIs in the treated and untreated regions 

Dataset: CPI.dta 

Strategies: 

1. testing the hypothesis of common linear time trend between treated and untreated regions using a regression 

model on pre-policy data. A linear time trend term is interacted with a policy dummy to check for potential 

differences in the (linear) trend. A significant interaction term will reveal significant differences in linear trends 

before the tax and should prevent from assuming common trend when estimating the tax effect.  

2. Plotting average outcomes for the treated and control groups against time give a sense of potential different 

time trends.  

3. estimating a model for the outcome variable over the entire sample of observations (both pre and post) against 

a full set of time dummies interacted with the policy dummy to detect systematic differences in time fixed effects 

among the two groups. 

Strategy 1: Equation 15 is estimated on CPIs over the pre-tax sample and regression outputs are shown in   
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Table 6. The coefficient of the interaction term (𝛼3 in equation  15) is statistically significant and positive (in bold below), 

showing significantly different linear trends in Catalonia and in the rest of the country before the tax was implemented.  
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Table 6. CPIs regression model estimated on pre-tax observations. Interaction term included to test differential linear time trend 
between Catalonia and control regions. 

 Monthly CPI (non-alcoholic drinks) 

Linear trend -0.0751*** 
 (0.0118) 
Policy dummy (=1 Catalunya, = 0 rest of the country) -1.025** 
 (0.497) 
Linear trend*Policy dummy 0.133** 
 (0.0514) 
Constant 100.5*** 
 (0.114) 
  
Observations 304 
R-squared 0.123 

 

Strategy 2: Visual inspection is helpful in detecting potential differential time trends. In Figure 3 the Catalonian and the 

National CPIs are plotted against. The graph shows a steeper linear time trend for CPIs measured in Catalonia with 

respect to the National CPIs before May 2017, when the tax was implemented.  

 

 
Figure 3: National and Catalonian monthly CPIs for non-alcoholic drinks, January 2016 – December 2019. 

 

The above results sound as a red flag when assuming common trends for DID methods. 

Strategy 3: Equation 16 is estimated for CPIs over the fulltime span. Results reported in Table 7  show non-significant 

interaction terms, nor before neither after the tax. However, when estimated coefficients are plotted against time a 

systematic pattern emerges (Figure 4). The estimated coefficients are systematically below zero before the tax and above 

zero after the tax. This pattern suggests some effect of the tax. 
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Table 7 CPIs regression model with full set of time dummies interacted with the policy dummy, entire sample. 

CPI 

Monthly fixed-effects:        
1.month_id 0.513  1.treated#18.month_id 1.979  1.treated#39.month_i

d 
1.857 

 (0.658)   (2.943)   (2.943) 
2.month_id 0.786  1.treated#19.month_id 2.555  1.treated#40.month_i

d 
1.963 

 (0.658)   (2.943)   (2.943) 
3.month_id 1.028  1.treated#20.month_id 2.363  1.treated#41.month_i

d 
2.290 

 (0.658)   (2.943)   (2.943) 
…   1.treated#21.month_id 2.386  1.treated#42.month_i

d 
2.393 

Treated  3.965*   (2.943)   (2.943) 
 (2.081)  1.treated#22.month_id 3.363  1.treated#43.month_i

d 
2.210 

1.treated#1.month_id -5.499*   (2.943)   (2.943) 
 (2.943)  1.treated#23.month_id 3.078  1.treated#44.month_i

d 
2.879 

1.treated#2.month_id -5.661*   (2.943)   (2.943) 
 (2.943)  1.treated#24.month_id 3.148  1.treated#45.month_i

d 
2.585 

1.treated#3.month_id -5.084*   (2.943)   (2.943) 
 (2.943)  1.treated#25.month_id 2.718  1.treated#46.month_i

d 
2.067 

1.treated#4.month_id -4.479   (2.943)   (2.943) 
 (2.943)  1.treated#26.month_id 2.832  1.treated#47.month_i

d 
2.672 

1.treated#5.month_id -3.958   (2.943)   (2.943) 
 (2.943)  1.treated#27.month_id 2.918  1.treated#48.month_i

d 
1.024 

1.treated#6.month_id -3.544   (2.943)   (2.943) 
 (2.943)  1.treated#28.month_id 1.811    
1.treated#7.month_id -3.360   (2.943)  Constant 99.59*** 
 (2.943)  1.treated#29.month_id 2.533   (0.465) 
1.treated#8.month_id -3.219   (2.943)    
 (2.943)  1.treated#30.month_id 2.366  Observations 960 
1.treated#9.month_id -3.178   (2.943)  R-squared 0.501 
 (2.943)  1.treated#31.month_id 2.022    
1.treated#10.month_id -3.219   (2.943)    
 (2.943)  1.treated#32.month_id 3.362    
1.treated#11.month_id -3.453   (2.943)    
 (2.943)  1.treated#33.month_id 0.771    
1.treated#12.month_id -2.928   (2.943)    
 (2.943)  1.treated#34.month_id 2.341    
1.treated#13.month_id -3.448   (2.943)    
 (2.943)  1.treated#35.month_id 1.504    
1.treated#14.month_id -3.548   (2.943)    
 (2.943)  1.treated#36.month_id 1.203    
1.treated#15.month_id -3.784   (2.943)    
 (2.943)  1.treated#37.month_id 0.852    
1.treated#16.month_id -3.459   (2.943)    
 (2.943)  1.treated#38.month_id 2.559    
1o.treated#17b.month_id 0   (2.943)    
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Figure 4 Estimated coefficients of full-set of interaction terms plotted against time. 

 

3.4.2 Accounting for differential (linear) time trends under a DID framework. 

When the available sample includes multiple units and multiple time periods, it is possible to slightly relax the common 

trend assumption and introduce a “degree of nonparallel evolution in outcomes”(Angrist & Pischke, 2014) between units 

in the absence of the treatment effect. The following model controls for group-specific linear trends: 

 𝑦𝑖𝑡 = α0 + α1𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑖 + 𝛼2𝑝𝑜𝑠𝑡𝑡 + 𝛽1trendt + 𝛽2𝑡𝑟𝑒𝑛𝑑t ∗ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + 𝛿𝑇𝑖𝑡 + 𝜽𝑖𝑡 + 𝜂𝑖𝑡 17 

Where the standard DID specification (equation 12 and 13) is augmented with a linear trend (𝑡𝑟𝑒𝑛𝑑𝑡) interacted with the 

policy dummy (𝑡𝑟𝑒𝑛𝑑t ∗ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑i) to account for differential linear trends in treated and untreated outcomes. This model 

assumes that in the absence of the policy effect, the outcome in the treated group deviate from the common trend  and 

follow a different (still linear) time trend captured by the 𝛽2 coefficient. 𝛿 in equation 17 returns the estimated policy 

impact (ATT), which consists in “deviations from otherwise smooth trends, even if trends are not common” (Angrist & 

Pischke, 2014). 

 

Application 5. Estimating the effect of the Catalonia soda tax on CPIs, using a DID approach and allowing for differential 
linear time trend 

Dataset: CPI.dta 

Strategy: following equation 17, we estimate the following model: 

𝐶𝑃𝐼𝑖𝑡 = α0 + 𝛼1𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + 𝛼2𝑝𝑜𝑠𝑡𝑡 + 𝛽1trendt + 𝛽2𝑡𝑟𝑒𝑛𝑑t ∗ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑i + 𝛿𝑇𝑖𝑡 + 𝜽𝑖𝑡 + 𝜂𝑖𝑡 

Where the standard DID model is augmented with a linear trend (𝑡𝑟𝑒𝑛𝑑𝑡) interacted with the policy dummy (𝑡𝑟𝑒𝑛𝑑t ∗

𝑡𝑟𝑒𝑎𝑡𝑒𝑑i) to account for differential linear trends in CPIs in Catalonia and the rest of the country. Results are reported in 

Table 8 and the estimated ATT is in bold. Allowing for potential differential linear time trend slightly reduces the size of 

the tax effect.  
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Table 8 DID estimate of the effect of the Catalonia tax on CPIs using a regression model accounting for seasonality and differential 
linear time trends. 

 Montlhy CPI (non-alcoholic drinks) 

  
Linear trend 0.118*** 
 (0.00891) 
Linear trend*policy dummy 0.00649 
 (0.0382) 
Policy dummy (=1 Catalunya, = 0 rest of the country) 0.0480 
 (0.620) 
Post policy dummy (=1 if observed after May 2017) -0.692*** 
 (0.260) 
Interaction term: treated*post 5.974*** 
 (1.122) 
Dummy for quarter=1 0.555*** 
 (0.198) 
Dummy for quarter=2 0.401** 
 (0.196) 
Dummy for quarter=3 0.121 
 (0.195) 
Constant 98.56*** 
 (0.204) 
  
Observations 912 
R-squared 0.449 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Application 6. The DID model applied to Case study 2: the Cycling May Campaign 

Within Sub task 3.1.3 the DID approach has been deeply investigated also with reference to Case Study 2 which 

focuses on the Cycling May campaign.  In the present section the case study is shown briefly. Thanks to the fruitful 

collaboration between WP3 (Sub task 3.1.3) and WP6 on this case study, a paper with title “Impact evaluation of 

a cycling promotion campaign using daily bicycle counters data: the case of Cycling May in Poland” was produced 

and submitted by Beatrice Biondi (University of Bologna), Aleksandra Romanowska (Gdansk University of 

Technology) and Krystian Birr (Gdansk University of Technology) on January 2022.  

Startegy: to estimate the effect of Cycling May campaign on bicycle traffic in Gdansk we use a difference-in-differences 

approach by comparing bicycle traffic in Gdansk – where the intervention was implemented – with bicycle traffic in Lodz 

where Cycling May was not implemented. We estimate panel regression models that account for fixed cross-sectional 

(counter-level) and time effects. The estimated model has the following equation: 

 𝑦𝑖𝑡   =   𝛾 𝑋𝑐𝑡 + 𝛿 𝑝𝑖𝑡 + 𝛽 𝑍𝑡 +  𝜆𝑖 + 𝜀𝑖𝑡 18 

The dependent variable is the number of bicycles registered by each counter 𝑖 on day 𝑡. 𝑋𝑐𝑡 are city and time specific 

variables, 𝑍𝑡 are time specific variables, 𝜆𝑖  are counter-specific fixed effects, 𝜀𝑖𝑡 is the residual error component. The 

binary variable 𝑝𝑖𝑡  refers to the policy and is 1 for May observations from Gdansk counters, and 0 otherwise, so that the 

coefficient 𝛿 is the DiD estimator of the average treatment effect on treated units (ATT). This coefficient returns the 

additional bicycle traffic generated in Gdansk by the Cycling May intervention, after controlling for covariates.  

𝑋𝑐𝑡 in equation 18 are city and time specific control variables that account for specific weather conditions and touristic 

flows in each city: 

 𝑋𝑐𝑡 = γ1𝑇𝑜𝑢𝑟𝑖𝑠𝑡𝑠𝑐𝑚 + 𝛾2𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑐𝑡 + 𝛾3𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠𝑐𝑡 + 𝛾4𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑐𝑡 + 𝛾5𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑐𝑡  19 

The 𝑇𝑜𝑢𝑟𝑖𝑠𝑡𝑠𝑐𝑚  variable refers to the monthly number of tourists in Gdansk and in Lodz, ∀ 𝑑𝑎𝑦 𝑡 ∈  𝑚𝑜𝑛𝑡ℎ = 𝑚,

𝑤𝑖𝑡ℎ  𝑚 = 1, … , 36. Daily average wind speed, cloudiness, temperature and precipitation are included for each city.  
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The vector 𝑍𝑡 in equation 18 contains time specific variables that are common to the treated and control group, including 

seasonal factors relevant to commuting, i.e. differences in bicycle traffic by quarter 𝑚, day of the week and holidays in 

Poland. We specify the 𝑍𝑡 component of the model as follows: 

 
𝑍𝑡 = ∑ β1𝑚𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑚

3

𝑚=1

+ ∑ β2𝑡𝐷𝑎𝑦𝑜𝑓𝑊𝑒𝑒𝑘𝑡

6

𝑑=1

 +  β3𝑃𝑢𝑏𝑙𝑖𝑐𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠𝑡  +  β4𝑆𝑢𝑚𝑚𝑒𝑟𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠𝑡 
20 

The counter-specific fixed effects included in the model (λ𝑖  in equation  18) allow to control for all time-invariant 

differences between bike lanes, e.g. distance from schools, average traffic, etc. By including these fixed effects, we control 

for any omitted time-invariant factor. 𝜀𝑖𝑡 is an error term that captures any unobserved factor that may affect bicycle 

traffic and is assumed to have zero mean, conditional on the counter and day. 

By including exogenous time-varying controls into the model, the common trend assumption between the two groups is 

met conditionally on these covariates. In the current application, the common trend assumption can be tested by 

comparing the outcomes over months in which the intervention is not implemented (non-treatment periods), without 

and with control variables.  

The identifying assumption of our model is that there are no omitted factors that have a differential impact on bicycle 

traffic in Gdanks and in Lodz. In other words, we assume that, after controlling for systematic differences through fixed 

effects and for city and time-varying differences due to observed factors (atmospheric conditions and touristic flows), in 

absence of the policy the average outcome in the two cities would be the same. We provide evidence that this assumption 

is reasonable by showing trends and seasonality in bicycle traffic in the two cities, and the distribution of touristic flow 

over time.  

In order to test for the robustness of our findings, we estimate several models that differ in term of choice of the 

dependent variable, specification and estimation method, i.e. (1) fixed effects panel regression with the natural logarithm 

of daily bicycle counts as dependent variable (therefore coefficients estimates are to be interpreted as percentage 

changes in the number of bycicles); (2) panel Poisson regression using the level of the count, here estimates refer to the 

difference between the log of expected counts and their exponential function represents the change in the expected 

number of bicycles (3) Cycling May intervention included as number of yearly participants (instead of as binary variable). 

A similar DID model applied to daily bicycle counter data has been used before in the study by (Kraus & Koch, 2021). While 

we partially follow their approach, the evaluation of Cycling May campaign has one peculiarity related to the fact that the 

intervention is repeated over time. This means that there are no unique pre- and post- implementation periods, but 

treatment periods (the months of May) and non-treatment periods are cyclic. The effect of the policy is observable during 

the month of May, but we expect that there might be a persistence effect in the subsequent period. To explore such 

persistence, we check for differential outcomes for the months of June, July and August.  

Data: the data cover a three years period, from the beginning of September 2016 to the end of August 2019. Cycling May 

campaign was implemented in Gdansk throughout the period of our analysis (in the month of May for all years from 2017 

to 2019). The raw data include daily bicycle counts from 26 counters in Gdansk and 9 counters in Lodz. Observations from 

three counters in Gdansk were excluded because these counters were installed after the beginning of our period of 

analysis; observations from two counters in Lodz were also excluded from the analysis because of missing data (likely due 

to counters technical problems). Therefore, our dataset includes bicycle counts from 30 counters (23 in Gdansk, 7 in Lodz) 

over a period of 1.095 days, resulting in 32.850 observations. 

Outcome: The daily bicycle traffic at the counter level is our outcome of interest. Figure 5 shows the average (across 

counters) number of daily bicycles counts in the two cities, by month and year. The trend is similar, except for the months 

from May to August, when the bicycle traffic in Gdansk is relatively more intense. The introduction of the bike sharing 

system in Gdansk in April 2019 produces a clear increase in bicycle traffic. 
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Figure 5 Average number of bicycle counts by city and month 

 

A possible explanation for the gap in bicycle traffic between the two cities during the summer is related to the tourist 

flows; since Gdansk is situated by the sea, tourist numbers are likely to escalate during the summer.  

Figure 6  displays the monthly number of tourists in the two cities, and clearly shows that Gdansk is characterized by 

highly seasonal tourism, while tourism flows in Lodz are more stable across different seasons and during the period 

considered. Accordingly, the number of tourists could become a good control in the model, accounting for the different 

bicycle traffic during the summer. 

 

Figure 6 Average number of daily tourists, trend by month and city 

Other included covariates (i.e. controlled factor) in the DID model are daily weather data obtained from meteorological 

stations located in Gdansk and Lodz, close to the central areas, regarding average temperature, average wind speed, 

average cloudiness and sum of precipitation. In general, Gdansk and Lodz have similar temperature, cloudiness and 

precipitations, but Gdansk seems windier than Lodz, probably because of proximity to the sea. Focusing on the month of 

May – the treatment period – Figure 7 shows that, differently from what observed in previous years, precipitations in 
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May 2019 are substantially higher in Gdansk than in Lodz. Lastly, in the model we control for the period in which bike 

sharing was active in Gdansk, that is after April 2019. 

 

Figure 7 Wheather conditions in Gdanks and Lodz over the estimation sample 

We test the common trend assumption outside the intervention periods, i.e. excluding May. More specifically, we allow 

for differential linear trends between the two cities. Table 9 shows results of panel regression models estimated on daily 

bicycle counts as dependent variable: model (1) checks for the common trend assumption over time without controlling 

for any other exogenous factor and model (2) includes potentially relevant covariates. Model 1 results in a significant 

differential trend, that becomes insignificant when controlling for exogenous factors; also, the common trend becomes 

smaller and negative, meaning that the positive trend captured by model (1) can be explained but other exogenous 

factors. Therefore, common trend assumption holds after controlling for seasonality, number of tourists, day of the week, 

holidays, atmospheric conditions, and activation of bike sharing in Gdansk, and we control for these factors in the DiD 

model. 
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Table 9 Check for common trend in non-treatment periods, without controls (1) and including controls (2) 

                          (1) (2) 

Trend 11.92*** (0.97) -2.52*** (0.69) 

Trend # Gdansk 8.20*** (1.11) 0.44 (0.85) 

Wind speed                
  

-32.59*** (1.75) 

Cloudiness                
  

-53.77*** (1.61) 

Temperature                      
  

42.28*** (0.73) 

Precipitation                      
  

-13.97*** (0.62) 

Number of tourists (thous.)     
  

5.53*** (0.25) 

Monday                    
  

132.10*** (11.52) 

Tuesday                   
  

172.89*** (11.56) 

Wednesday                 
  

167.39*** (11.61) 

Thursday                  
  

154.50*** (11.53) 

Friday                    
  

94.93*** (11.53) 

Saturday                  
  

-22.36* (11.51) 

Public holiday 
  

-150.83*** (18.03) 

Summer holiday              
  

111.08*** (13.72) 

Quarter=2                 
  

207.26*** (13.92) 

Quarter=3                 
  

6.37 (16.54) 

Quarter=4                 
  

-51.04*** (9.15) 

Bike sharing Gdansk   147.19*** (14.29) 

Constant                  483.29*** (9.18) 338.38*** (20.80) 

N                         30,060 30,060 

Log likelihood                       -242727 -231430 

Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01 

Results of the DID model are displayed in Table 10 (model a): according to the estimated model, Cycling May campaign in 

Gdansk increases bicycle traffic by nearly 159 bicycles per day per counter, ceteris paribus. 

 

Table 10 Estimated effect of the Cycling May campaign using a DID approach 

Model (a) Coefficient Standard error 

Wind speed                -33.67*** (1.74) 

Cloudiness                -59.90*** (1.54) 

Temperature                      43.72*** (0.71) 

Precipitation                      -14.49*** (0.63) 

Number of tourists (th.)   5.13*** (0.24) 

Monday                    133.72*** (11.32) 

Tuesday                   173.72*** (11.33) 

Wednesday                 169.19*** (11.35) 

Thursday                  150.54*** (11.31) 

Friday                    84.45*** (11.32) 

Saturday                  -19.98* (11.33) 

Public holiday -128.74*** (16.51) 

Summer holiday              117.20*** (13.87) 

Quarter=2                 209.33*** (13.41) 

Quarter=3                 2.60 (15.98) 

Quarter=4                 -46.57*** (9.14) 

Bike sharing Gdansk 57.66*** (11.85) 

Cycling May               158.55*** (14.02) 
Constant                  368.03*** (20.22) 
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Counter FE Y  

N                         32,850 
 

LL -253701 
 

R squared 0.70 
 

AIC 507441  

BIC 507600  
* p<0.1 ** p<0.05 *** p<0.01 

Atmospheric conditions, day of the week and period of the year significantly affect bicycle traffic. Cloudiness, wind speed 

and precipitations negatively affect bike traffic, while more bicycles are observed with increasing temperature. Higher 

bicycle traffic is observed during weekdays compared to weekends, and less bicycles during public holidays, meaning that 

bicycles are a way of transport mainly used by commuters, compared to the use for leisure activities. During spring and 

summer holidays, more bicycles are observed; the implementation of bike sharing system in Gdansk produced a 

significant increase in bicycle traffic.  

Table 11 displays estimates of alternative model specifications, to test the robustness of results. Model (b) takes the 

natural logarithm of daily bicycle counts; model (c) is the Poisson regression using the level of the count. Besides the 

average effect produced by the Cycling May intervention, we explore the effect in relation to the number of registered 

participants in model (d), which can be used as a proxy of the “intensity” of the treatment. The resulting coefficient can 

be interpreted as the average increase in overall daily number of bicycles per counter generated by each registered 

participant.  

If we consider the average percentage change in model (b), a 18% increase in bicycle traffic is estimated; finally, the ATT 

estimate from model (c) suggests an increase of 15% in the expected number of bicycles when the intervention is in place. 

Results of model (d) indicates that for each thousand individuals participating there are on average five bicycle more per 

day per counter; this results in a total of nearly 4 thousand more bicycles per day in Gdansk (23 counters * 5 bikes* 34 

(thousand participants in 2019)= 3,910 daily increase) when the policy is in place, which is consistent with results of other 

models (e.g. 159 more bikes * 23 counters= 3,657 daily increase). 

 

Table 11 Estimated effect of the Cycling May campaign using a DID approach, alternative specifications 

                          (b) 
 

(c) 
 

(d)  

Cycling May               0.18*** (0.011) 0.15*** (0.010)   
Participants (th.)     4.53*** (0.452) 

Counter FE Y  Y  Y  

N                         32,727 
 

32,850  32,850  
LL -18640 

 
-1553297  -253715  

R squared 0.88 
 

0.90  0.70  
AIC 37318  3106632  507468  
BIC 37477  3106792  507628  

Standard errors in parentheses; * p<0.1 ** p<0.05 *** p<0.01. Percentage increase (i.e. Exp(beta)-1), Pseudo-R squared and Log 
pseudo-likelihood reported for model (b). Covariates estimates not shown. 
 

Results are consistent and indicate a significant increase in bicycle traffic in Gdansk attributable to Cycling May campaign. 

If one relates the estimate of absolute number of additional bicycles (model a) to the average bicycle traffic in Gdansk 

over the three years of our sample (882 bicycles per day), the estimated impact of the campaign is again 18%, which 

matches the result obtained from model (b). 

Estimates displayed in Table 12 refer to the persistence effect of Cycling May in the days after the initiative ends (model 

e). The stock variable represents the average daily traffic for each counter in the past 30 days, therefore the interpretation 

of the stock estimated coefficient is related to persistence: the higher the traffic in the past month, the higher the traffic 

in the considered day. The interaction of stock, month of June and city of Gdansk reveals the difference between the 

average persistence over the whole sample, and the specific (additional) persistence in June in Gdansk; the negative and 

small, but highly significant, coefficient means that in the month after the implementation of the Cycling May campaign 
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there is a decrease in persistence, in other words the increase in bicycle use in May is not sustained after the policy ends. 

Individuals that used the bicycle in May return to their usual mode of transport and the policy is not effective in changing 

people behaviour in the long term. 

 

Table 12 DiD estimates - Cycling May persistence 

            Model (e)              Coefficient Standard error 

Participants (th.) 4.11*** (0.36) 

Stock                      0.83*** (0.01) 

Stock # June # Gdansk                      -0.03*** (0.01) 

Counter FE Y  

N                         31,950  
LL -237255  
R squared 0.84  
AIC 474552  
BIC 474727  

Standard errors in parentheses; * p<0.1 ** p<0.05 *** p<0.01.Covariates estimates not shown. 
 

Table 13 reports additional robustness checks. In model (f) the dependent variable is the average daily bicycle count by 

city, the positive and significant effect of Cycling May is confirmed. Including differential linear trends (model g) does not 

sensibly change the estimated effect of Cycling May. Lastly, we account for city-specific quarterly differences in bicycle 

traffic for each year in model (h), and again we find consistent results. 

 

Table 13 DID estimates, robustness checks 

 (f)  (g)  (h)  

Quarter1                    140.69*** (49.05) 

Quarter2                    25.61 (39.75) 

Quarter3                    59.81 (40.20) 

Quarter4                    281.92*** (38.46) 

Quarter5                    85.64** (34.39) 

Quarter6                    -21.83 (39.81) 

Quarter7                    97.45** (40.74) 

Quarter8                    309.23*** (38.41) 

Quarter9                    46.99 (34.42) 

Quarter10                   6.13 (40.02) 

Quarter11                   8.67 (40.45) 

Quarter12                   119.68*** (38.52) 

Quarter1 # Gdansk           -119.15** (56.33) 

Quarter2 # Gdansk           -57.39 (52.18) 

Quarter3 # Gdansk           -44.50 (52.60) 

Quarter4 # Gdansk           -101.05** (45.20) 

Quarter5 # Gdansk           -167.34*** (40.17) 

Quarter6 # Gdansk           -88.65* (49.64) 

Quarter7 # Gdansk           -126.09** (50.28) 

Quarter8 # Gdansk           -112.93** (44.09) 

Quarter9 # Gdansk           -179.86*** (39.43) 

Quarter10 # Gdansk          -89.59* (48.52) 

Quarter11 # Gdansk          -60.96 (50.29) 

Quarter12 # Gdansk          58.26 (42.82) 
Cycling May 170.48*** (24.86) 154.41*** (14.02) 146.61*** (14.60) 
Monthly trend   -3.27*** (0.62)   
Monthly trend # Gdansk   1.14 (0.77)   
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Counter FE   Y  Y  
City FE Y      

N                         2,190  32,850  32,850  

LL -14826  -253676  -253622  

R squared 0.88  0.70  0.70  

AIC 29688  507395  507323  

BIC 29791  507571  507650  
Quarters are three month-periods (Jan-Mar, Apr-June, Jul-Sep, Oct-Dec), except Quarter1= September 2016; Quarter13=July and 
August 2019. Quarter13 is the reference period. 
Standard errors in parentheses. * p<0.1 ** p<0.05 *** p<0.01. Covariates estimates not shown. 

 

3.5 Selection unobservables: synthetic control methods  

When pre-policy data cover multiple periods and multiple non-treated groups (e.g. regions), the synthetic control method 

(SCM) is a popular option (Abadie et al., 2015) . Consider a situation where only one region is treated, and there are n 

non-treated regions. The principle is relatively straightforward, instead of using the n controls separately, they are 

artificially combined into a single control group as a weighted average. The weights are obtained through an optimization 

algorithm which minimizes – in each time period before the policy – the distance between the outcomes and the observed 

covariates measured in the target group and those obtained as the weighted average of the n values measured in the 

multiple control groups. In other words, the SCM allows not only to ensure the common trend between the treated region 

and the artificial control group, but also balances the covariates. Then, the weights can be applied in the post-policy period 

to obtain the counterfactual outcomes.  

This  method “extends the traditional linear panel data (difference-in-differences) framework, allowing that the effects of 

unobserved variables on the outcome vary with time”(Abadie et al., 2010) 

Data requirements: 

- Balanced panel dataset including  

o a pre-intervention period and a post-intervention period 

o one unit (e.g. a region) exposed to the intervention and multiple units not exposed to the intervention 

(donor pool). If necessary data can be first aggregated (e.g. from the household level to the regional 

level). 

- A vector of observed covariates which are reasonable predictors of the outcome  
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Application 7. Estimating the effect of the Catalonia soda tax on CPIs, allowing for differential time trends 
under a Synthetic Control approach 

Dataset: CPI.dta  

Outcome: CPIs for non-alcoholic drinks 

Treated unit/s: Catalonia  

Control unit/s: remaining 18 autonomous regions  

Strategy: a synthetic control region is constructed as a data-driven weighted average of the non-treated regions. Pre-

treatment CPIs and other time invariant observed covariates are used.  

Table 14 reports the average of CPIs predictors for Catalonia, for the synthetic control region and for the 18 real control 

regions. This gives an idea of the similarities (or lack thereof) between Catalonia and the synthetic control region, in terms 

of pre-tax predictors of post-tax outcomes. 

 

Table 14 CPIs predictors: average values for Catalonia, average values for the synthetic control region and average values across non-
taxed regions (pre-tax).  

 

 Catalonia  

 
Real Synthetic 

Average of 18 control 
regions (donors) 

Household size 2.562 2.587 2.654 

One-person household 0.183 0.188 0.190 

One parent with children less than 16 y.o. 0.025 0.022 0.024 

One parent with children older than 16 0.054 0.067 0.074 

Couple without children 0.281 0.280 0.249 

Couple with children less than 16 y.o. 0.219 0.212 0.195 

Couple with children older than 16 0.172 0.172 0.191 

Other household types = o, 0.065 0.062 0.077 

Age of the household reference person 54.481 55.229 55.128 

Education level 1 0.141 0.155 0.205 

Education level 2 0.300 0.298 0.305 

Education level 3 = o, 0.220 0.209 0.185 

Education level 4 0.339 0.341 0.305 

Pensioner-only household 0.282 0.295 0.278 

Food - Average purchased quantity 2403.713 2464.832 2502.844 

Non-alcoholic drinks - Average purchased quantity 455.804 432.541 457.416 

Alcoholic drinks -Average purchased quantity 165.345 173.231 160.456 

Non-alcoholic softdrinks -Average purchased quantity 162.372 174.369 181.109 

 

Table 15 shows the relative contribution of each control region to the counterfactual synthetic region. “Because the 

weights can be restricted to be positive and sum to one, the synthetic control method provides a safeguard against 

extrapolation”(Abadie et al., 2010) 
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Table 15 Region weights in the synthetic Catalonia 

Control region Weight  Control region Weight 

Andalucia 0  Extremadura 0 

Aragón 0.375  Galicia 0 

Asturias 0  Madrid 0.149 

Balearic 0.058  Murcia 0 

Canary 0  Navarra 0.197 

Cantabria 0  Basque 0 

Castile_leon 0  Rioja 0 

Castile_mancha 0  Ceuta 0 

Valencia 0.173  Melilla 0.05 

 

According to Figure 8, CPI for non-alcoholic drinks in the synthetic Catalonia very closely track the trend of the same CPI 

in Catalonia for the pre-tax period. Given the high degree of balance on all CPIs predictors shown in Table 15, this suggests 

that the synthetic Catalonia provides a good approximation to the CPIs that would have been registered in Catalonia after 

May 2017 in the absence of the tax. Immediately after May 2017, the two lines begin to diverge clearly, which suggests a 

large negative effect of the tax on CPIs.  

 

 
Figure 8 Trends in CIPs: Catalonia vs synthetic Catalonia 

3.6 Selection on unobservables, randomization with imperfect compliance: the instrumental variable (IV) 

approach 

 D(X, U, Z)  =  D(U, Z) where U is correlated to Y0. 

In some cases, even if the selection to the treatment is randomized (D depends on a random binary variable Z), there 

might be imperfect compliance to the treatment assignment. As a result, the actual treatment state does not coincide 

with the assigned treatment state. If the compliance mechanism is not known it is not possible to estimate the ATT. 

However, it is possible to estimate: 

- the Intention to treat (ITT), which is the causal effect of being assigned to the treatment (not necessarily being 

treated). The estimation requires comparing the two groups indexed by Z: {𝑌|𝑍=1} – {𝑌|𝑍=0}. No selection bias 

arises since Z is randomly determined. 

- The Local Average Treatment Effect (LATE): the causal effect of the treatment on compliers. This is obtained by 

using Z as an instrumental variable for D  
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Provided that one or more “good” instruments are available, IV estimators of the ATT allow to control for selection effects 

driven by both observables and unobservables. Let us consider a general outcome equation, where  

 𝑦𝑖 = 𝛼 + 𝛽𝐷𝑖 + 𝛾𝒙𝑼 + 𝛿𝒙𝑼 + 𝜀𝑖 21 

where 𝑦𝑖  is the outcome for the i-th unit, 𝐷𝑖  is a binary indicator (the policy dummy) which is equal to 1 when the i-th unit 

is exposed to the policy and 0 otherwise, 𝒙𝑶 is a vector of observed variables and 𝒙𝑼 a set of unobserved variables 

(equation 21 differs from equation 7 because of the introduction of the latter).  

In absence of information on  𝒙𝑼 , we face the econometric textbook problem of omitted variables, so that all coefficient 

estimates are biased and inconsistent. Under an economics viewpoint, a parallel interpretation is that the selection 

variable 𝐷𝑖  is endogenous, as the probability of being exposed to the policy depends on the outcome level. For example, 

schools located in high income and education areas where fruit consumption is high, are more likely to participate in 

school fruit schemes.   

Provided we have one or more adequate instruments 𝒘 to instrument 𝐷𝑖  we can control for the selection bias and obtain 

consistent ATT estimates, at the cost of giving up some efficiency. Statistical packages routinely provide IV-2SLS estimators 

where the first stage regression is again a binary dependent variable model, a probit or a logit. Note that the structural 

policy model 21 still accounts for unbalances in observables 𝑥𝑂 , which enter directly the model as they are expected to 

influence the outcome. Instead, instruments should be variables that we would not use as direct explanatory variables 

for the outcome, and should be exogenous. If we have access to such type of variables, the first stage binary regression 

would be the same used to estimate propensity scores, with 𝑥𝑂 as explanatory variables, plus the instruments 𝒘 which 

do not belong to 𝑥𝑂 and do not enter equation 21. 

Since IV encompasses PSM and accounts for selection on unobservables, why don’t researchers just rely on IV estimation? 

The problem is likely to be a familiar one for the experienced reader. First, we struggle to find reasonable instruments in 

the dataset. Second, we struggle to convince reviewers that our instrument choice is a good one. Unfortunately, there is 

no definitive test on the validity of instruments that can convince all actors in the publication process. The issue is a Catch-

22 one. In order to show that an instrument is exogenous, it must be independent from the residuals of the structural 

(second stage) equation. However, this test is theoretically impossible, as we only obtain unbiased estimates of the 

residuals if we have an exogenous instrument. The empirical solution is to use several instruments, leave one out, 

estimate the structural equation residuals through the other instruments, then check the correlation between the 

excluded instrument and the estimated residuals. One can then repeat the procedure leaving out a different instrument 

each time. While such a strategy may provide some support to the instrument validity claims, it is an empirical one, and 

it is still grounded on the assumption that the included instrument are exogenous and the residual estimates are unbiased. 

If many of our instruments are endogenous, the procedure is useless. Thus, we still need to be convinced and convince 

others that the instruments make sense under an economic perspective. 

The other interesting element is the trade-off between consistency and efficiency. If the instrument are reasonable, 

exogenous, and obviously significant in the first stage equation, then we can place some trust in the consistency of the 

ATT estimate in the second stage equation. However, the ATT will have a larger standard error, as we rely on predictions 

of the Di variable in the second stage, a sort of propensity scores augmented by the instruments. How much larger the 

standard error depends again on the goodness-of-fit of the first stage probit or logit equation. This time, however, a poor 

fit does not lead to systematic biases, it just inflates the standard errors, and with large data-sets this is not usually a 

problem. 

A list of instruments used in the food policy literature is beyond the scopes of this article, although it would be an 

interesting reading. For example, Hofferth & Curtin, 2005 investigate the effect of school lunch programs on the BMI of 

students. Participation to the lunch programs is voluntary for schools, and students need to have specific characteristics 

to be eligible for a free meal. These policy elements are clearly a source of endogenous selection. Public school attendance 

is used as an instrument, as it does not affect BMI directly, but it is strongly associated with the school program 

participation, since public schools are more likely to be part of lunch programs.  

An alternative strategy resting on the use of instruments is the control function approach. This approach involves a first 

stage to model the exposure to the program, and a second stage where the individual probability of exposure is included 



 

 

43 

as an additional variable on the right-hand side of the outcome model, to correct for the selection bias. The Heckman 

two-step estimator is the most widely used control function approach. For example, Butler & Raymond, 1996 explore the 

impact of household participation in US Food Stamp program on nutrient intakes of the elderly, using a variety of 

instruments, including household assets and distance to a food stamp office. 

3.7 Strategies based on structural models 

An alternative approach is needed in situations where there is no natural counterfactual, for instance when a policy 

potentially acts on the whole population, as in a nationwide a public information campaign. As information policies may 

be expected to generate behavioural effects beyond the mere change of the average outcome, an option is to generate 

model-based counterfactual estimates. This approach is especially interesting when the behaviour of interest is well 

captured by a consolidated economic specification, and it is conveniently applicable when the pre-policy and post-policy 

data come from different (repeated) cross-sectional samples from the same population. One may then express the 

outcome as the function of its determinants in each period: 

 𝑦𝑖
0 = 𝑓0(𝐱𝒊𝐎

0 ) + 𝜀𝑖
0 22 

and       

 𝑦𝑖
1 = 𝑓1(𝐱𝒊𝐎

1 ) + 𝜀𝑖
1 23 

The functions f0 and f1 have the same structural specification, but are characterized by different parameters. For example, 

f might be a demand function and the parameters represent price and income elasticities. As implied by the Lucas critique, 

a policy is likely to go beyond changing the average level of consumption, and also lead to a change in elasticities, hence 

the change from f0 to f1. 

If the policy has no direct impact on the covariates 𝐱𝒊𝐎, then he two set of estimates allow to evaluate the counterfactual 

outcome, which is estimated as �̃�𝑖
1 = 𝑓0(𝐱𝒊𝐎

1 ). In in our example this is the level of consumption that would have been 

observed in period 1 had the population maintained the preference structure of period 0. The ATT is 𝑓1(𝐱𝒊𝐎
1 ) − 𝑓0(𝐱𝒊𝐎

1 ). 

The approach can be modified to include constraints on behavioral parameters, for example one might require that some 

of them remain constant between the two time periods. Also, if there are variables in 𝐱𝒊𝐎
1  that are significantly affected 

by the policy, and it is possible to disentangle such effect (e.g. an estimate of the change in public advertising expenditure, 

or of the price change associated with a tax), one might estimate the counterfactual through 𝑓0(�̂�𝒊𝐎
1 ) where the relevant 

variables in 𝐱𝒊𝐎
1  are purged from the policy effect. 

When data are organized as panels or relatively long time series, alternative approaches based on structural models may 

rely on switching and time-varying parameter regressions, intervention or event study analyses. All of these models allow 

one or more parameters to change in response to the policy. The most basic formulation aims at estimating a sharp step 

(i.e. an intercept shift as in event studies) at the time of the policy implementation. When data allow to do so, any 

parameter in the structural model can potentially change and evolve, either with a pre-determined shape (as in 

intervention analysis or switching regression) or through random shocks (as in time-varying parameters models).  

An example of nutrition policy evaluation where the counterfactual is based on a structural model is provided in (Capacci 

& Mazzocchi, 2011), who explore the effects of the 5-a-day information campaign in the UK through a demand system. 

(Attanasio et al., 2012) exploit randomization in the Mexican program Progresa to discuss how structural models can 

improve program evaluations even in cases where evidence from experiments is available. (Kim et al., 2001) exploit a 

switching regression model to estimate the effect of the Nutrition Labelling and Education Act on diet quality in the US. 
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3.8 Other methods and extensions 

When estimating real-world policy impacts, it is important to consider that the actual impact – or treatment effect (TE) – 

of the policy may be very heterogeneous across exposed subjects due to various reasons, and average estimates (ATE) 

may thus be unsatisfactory. If subjects are exposed to the policy, but do not comply with the intervention, ATE estimates 

become problematic, as non-compliers are likely to systematically differ from both compliers and control subjects (i.e. 

reasons for compliance are correlated with TE). Consequently, two different TEs can be estimated: (1) considering all 

those exposed regardless of their compliance, which returns the average intention-to-treat (ITT) effect; and (2) 

considering treated subjects only, while accounting for the additional selection bias, which returns the local average 

treatment effect (LATE). When non-compliance is an issue, the LATE can be obtained through an IV estimator (Imbens 

and Wooldridge, 2009). Furthermore, TEs may be heterogeneous between subjects due to the nature of the intervention 

(as in e.g. personalized nutrition or physical activity programs) since its effectiveness primarily depends on subject 

characteristics. Recently, there is a growing interest in methods (mostly based on machine learning) that capture this 

heterogeneity of policy impact across subpopulations, by letting the ATE depend on sample covariates (CATE), Wendling 

et al 2018 . Quantile DID models (Chakrabarti et al 2018) and LASSO estimators may be of use for the quantification of 

heterogeneous treatment effects (Belloni et al 2017). 

 
Applications and future directions 

Within the PEN project, ongoing work is exploring the variable impact of the tax on the unit values paid by consumer in 

Catalunya as a response to the SSB tax. More specifically, a RIF-DID (Recentered Influence Function-DID) method is used 

(details will be provided in a forthcoming paper by Capacci, Calia, Ferrante). 
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