

Policy Symposium on NCD Prevention:

Future directions for nutrition and physical activity policies to prevent NCDs across Europe

14th-16th June 2022 Thon Hotel Brussels City Centre

The four projects organising this event have received European funding as follows: CO-CREATE and STOP have received funding from the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement No. 7744210 and No. 774548 respectively. JA Best-ReMAP has received funding from the European Union's Health Programme under the grant agreement No. 951202 and PEN has received funding from the Joint Programming Initiative "A Healthy Diet for a Healthy Life" (IPI HDHL).

Session 4 - Bergen 16:30 - 18:00

From maps to policies: a systems approach to diet, physical activity and obesity

Chair: Prof. Nanna Lien University of Oslo, Norway

#NCDPrevention22

The four projects organising this event have received European funding as follows: **CO-CREATE** and **STOP** have received funding from the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement No. 7744210 and No. 774548 respectively. **JA Best-ReMaP** has received funding from the European Union's Health Programme under the grant agreement No. 951202 and **PEN** has received funding from the Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL).

From concepts to policies: a systems approach to diet, physical activity and obesity

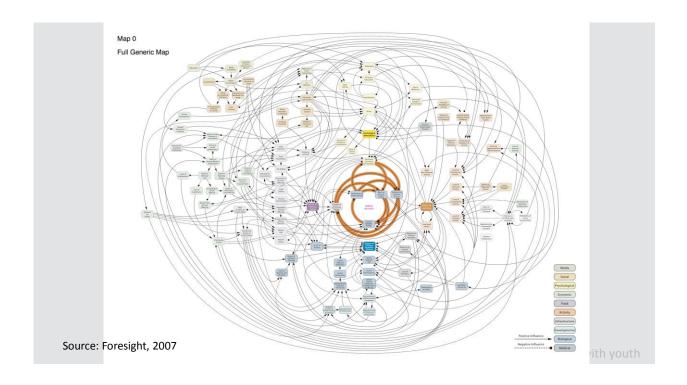
Nanna Lien, Department of Nutrition, University of Oslo, Norway on behalf of the CO-CREATE consortium

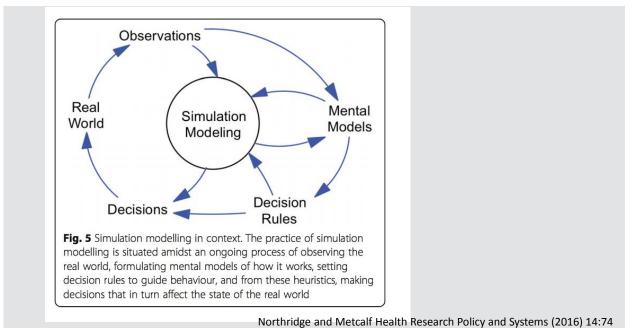
Session 4 Brussels June 14th, 2022

Aim of this session

To present systems approaches as a useful tool to evaluate policies and identify policy recommendations for a heathy diet, physical activity and the prevention of obesity.

Wicked problems


A wicked problem is a social or cultural problem that is difficult or impossible to solve for as many as four reasons:


- incomplete or contradictory knowledge,
- the number of people and opinions involved,
- the large economic burden, and
- the interconnected nature of these problems with other problems."
 - (Rittel and Webber, 1973)

----- Confronting obesity: Co-creating policy with youth

What characterizes systems approachs ?

- These approaches are specifically geared to identifying, understanding, and quantifying
 - nonlinear relationships among system components
 - time-delayed effects
 - bidirectional relationships between component parts (i.e., feedback loops)
 - emergent phenomena (i.e., properties of the system that emerge from the individual constituents of the system without being attributable to any given component)
 - Mabry et al Am J Public Health. 2010 July; 100(7): 1161–1163

From spagetti bowls to useful models

Table 1 Summary of best principles from systems science for informing the modelling process, recommendations for action by implementation scientists and contributing thought leaders and key references

Best principle	Recommendations	Thought leader [Reference	
1. Model the problem, not the system	Conduct formative research; construct models collaboratively in interdisciplinary teams	Sterman [34]	
 Pay attention to what is important, not just what is quantifiable 	Use qualitative data to derive causal relationships; be guided by deep thinking and multiple perspectives	Meadows [36]	
 Leverage the utility of models as boundary objects 	Create modifiable and readily perceptible representations of models; build trust and agreement by representing local knowledge	Black [43]	
4. Adopt a portfolio approach to model building	Work in parallel to develop separate but related models in diverse ways; encourage exploration with 'flawed' models rather than aiming for perfection	Metcalf [6]	

Agenda

- Meaningful participant engagement: using group model building.
- Evaluating policies: Using a systems approach to understand the mechanisms of the EU School Fruit and Vegetable Scheme.
- Understanding the complexity of socioeconomic inequalities in dietary behaviors and physical activity: a systems approach.
- Deriving recommendations based on systems approaches.
- Interactive discussions.

June 14th, 2022

Meaningful participant engagement: using Group Model Building (GMB)

Anaely Aguiar

University of Bergen, Norway on behalf of Co-Create

Work package leader: Natalie Savona (LSHTM)

"...in addition to being a target group, adolescents should be actively involved in working towards the SDGs at all levels as agents for change at the community, national, and international levels." (p.2356)

The *Lancet* Commission on adolescent health

Kleinert, S., & Horton, R. (2016). Adolescent health and wellbeing: a key to a sustainable future. The Lancet, 387(10036), 2355.

Systems thinking principles

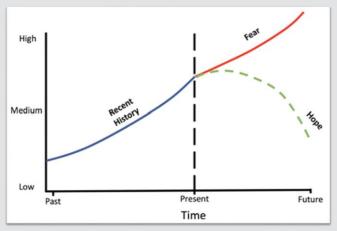
Goal: to improve our problemsolving skills to adapt to the dynamic nature of complex systems and create desirable futures. "an organizing rubric"

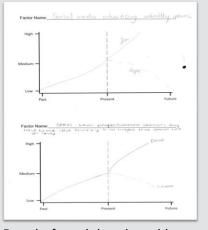
"help us unravel the complexity of causal forces"

Leischow, S. J., Best, A., et al. (2008).

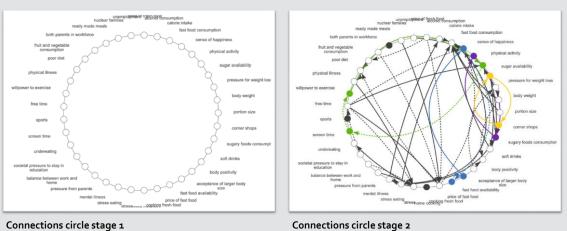
----- Confronting obesity: Co-creating policy with youth

Systems mapping: Group Model Building (GMB)

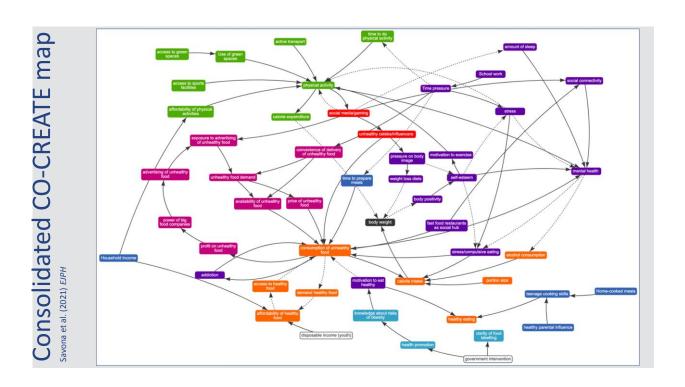

- Systems thinking in action
- A group facilitation technique that
 - helps groups discuss complex problems
 - engages diverse stakeholders
 - builds a visual representation of their understanding of the drivers of the problem
 - motivates people to action
 - allows collaborative development of policy /interventions / evaluations



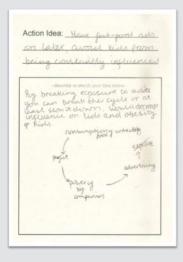
GMB process in Co-Create



Sample of a "behavior over time" graph

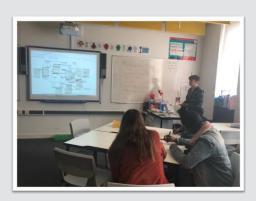

Example of a graph drawn by participants

----- Confronting obesity: Co-creating policy with youth


GMB process in Co-Create

Connections circle stage 2

GMB process in Co-Create



<complex-block><complex-block>

Action ideas activity

GMB: meaningful engagement in

- Population of interest identifies factors relevant to them
- Grounded in community-based system dynamics
- Participants are the experts
- Co-create *shared* learning and insights
- Engaging / interactive process
- All voices represented on the map
- Useful for sensitive topics/anonymity

----- Confronting obesity: Co-creating policy with youth

Using the system maps

- Visually represent how adolescents perceive obesity
- Identify feedback loops that amplify, or balance systems change
- Meaningful youth engagement → youth alliances
- ▶ Identify places to intervene in the system → policy levers
- Align policy questions with research needs
- Inform a System Dynamics simulation model

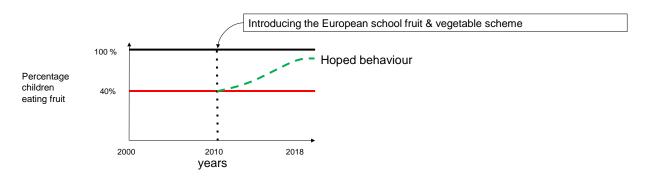
Policy evaluation: Applying a systems perspective to understand the mechanisms of the European School Fruit and Vegetable Scheme

Author(s): Mahshid Zolfaghari¹, Biljana Meshkovska¹, Anna Banik², Carlijn B.M. Kamphuis³, Birgit Kopainsky⁴, Aleksandra Luszczynska², Celine Murrin⁵, Nanna Lien¹; on behalf of the PEN consortium

Contact information: mahshid.zolfaghari@medisin.uio.no

1. Department of Nutrition, University of Oslo, Oslo, Norway, 2. Faculty of Psychology in Wroclaw, SWPS University of Social Sciences and Humanities, Wroclaw, Poland. 3. Department of Interdisciplinary Social Science, Utrecht University, Utrecht, The Netherlands 4. System Dynamics Group, Department of Geography, University of Bergen, Bergen, Norway. 5. School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin, Ireland

Funded by the Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) with contributions from national funding agencies of participating countries


Brussel, 14 June 2022

What is puzzling?

On average only **40%** of European 7–9-year-olds and 11–13–15-year-olds consume fruit daily and there has been **little change since 2000**.

Williams J, Buoncristiano M, Nardone P, Rito AI, Spinelli A, Heigaard T, et al. A Snapshot of European Children's Eating Habits: Results from the Fourth Round of the WHO European Childhood Obesity Surveillance Initiative (COSI). Nutrients. 2020;12(8):2481. Inchiey J, et al. Spotlight on adolescent health and well-being: Findings from the 2017/2018 Health Behaviour in School-Aged Children (HBSC) survey in Europe and Canada. International report. 2020;1.

What do we already know about the Scheme?

• The Scheme's impact is consistent with similar interventions which have a mean effect of 0.28 portions per day, primarily on fruit consumption.

Micha R, et al. Effectiveness of school food environment policies on children's dietary behaviors: A systematic review and meta-analysis. PLoS One. 2018;13(3):e0194555.

Aim

This study aimed to apply a **systems approach** to provide an integrated perspective of the **mechanisms** of the European School Fruit and Vegetable Scheme (the Scheme) to understand better how to increase its **long-term impact** on children's fruit and vegetable consumption.

What is a systems thinking approach?

Systems thinking uses causal loop diagrams (CLD) to depict the feedback structure of systems and to capture and communicate **hypotheses** about the **causes underlying the behaviour over time in a system**.

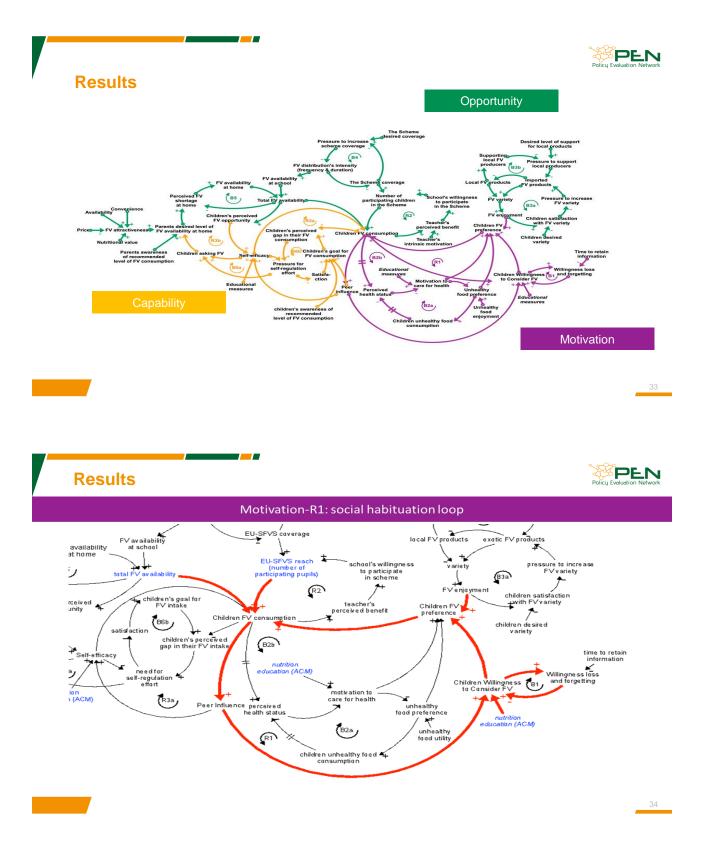
PEr

Why use system's perspective for policy evaluation?

System thinking is an **alternative** approach to policy evaluation. It seeks to understand and explain the general **system reaction** to a policy, and the **dynamic path of a response,** rather than the precise numerical value of the policy impact.

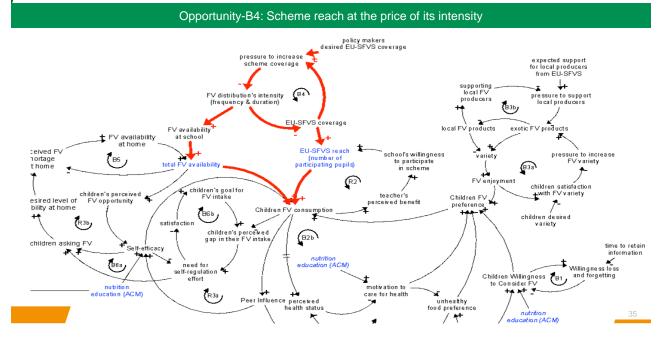
Policy Evaluation Network

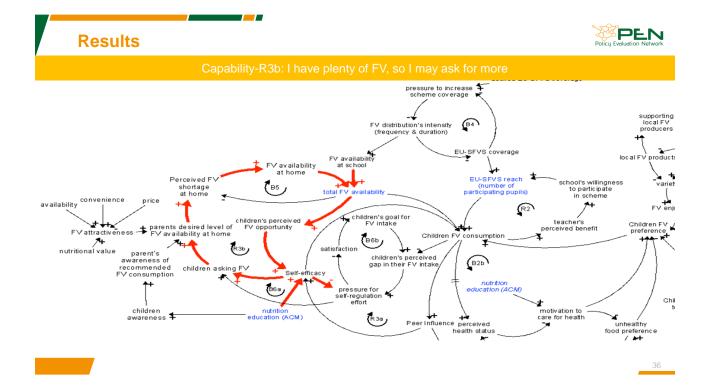
Method


- **Data collection:** Peer-reviewed articles and documents of national governments related to the Scheme.
- **Data analysis:** The coding approach was based on a method developed and applied in system dynamics to translate textual data into causal loop diagram systematically.
- **Model validation:** In three stages by consulting with experts (two individuals and a group) in school-based fruit and vegetable programmes, children's fruit and vegetable consumption, and the Scheme, using disconfirmatory interview guidelines.

Kim H, et al. Building confidence in causal maps generated from purposive text data: mapping transcripts of the Federal Reserve. Syst Dyn Rev. 2012;28(4):311., Andersen DL, et al. The disconfirmatory interview as a strategy for the assessment of system dynamics models. Syst Dyn Rev. 2012;28(3):255.

What do the symbols on the CLD mean?


- Reinforcing feedback loop : A reinforcing feedback loop (indicated by R) enhances whatever direction of change is imposed on the system. A reinforcing loop can lead to exponential growth and improvement (virtuous cycle) or forceful collapses (vicious cycle).
- Balancing feedback loop (or, goal seeking feedback loop): A balancing feedback loop (indicated by B) **opposes whatever direction of change is imposed on the system**. They can be a source of stability or resistance to change.



Results

PEN Policy Evaluation Network

Discussion

Our CLD reflects the principle of "limit to growth," a systems archetype that emphasises that every growth path (e.g., increasing children's FV consumption) has inherent limits.

- The children's social interaction (R1),
- Self-efficacy (R3a),
- Asking for FV from parents (R3b),

Financial resources (B4),

- Widespread awareness of recommended FV consumption (B5),
- The availability of a diverse range of FV products (B3a,b),
- School acceptance of the scheme (R2),

Key points

- Factors influencing children's long-term FV consumption and the effectiveness of schoolbased FV policies are **interrelated.**
- The interrelated motivation, opportunity, and capability mechanisms highlight the crucial role of **multi-component interventions** in addressing children's low FV consumption.
- Providing ongoing opportunities for children to consume FV by engaging more schools and parents, while strengthening motivation and capability mechanisms through ageappropriate educational measures, should be the primary focus of school-based FV policy programmes.

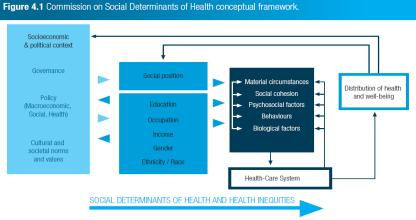
UNDERSTANDING THE COMPLEXITY OF SOCIOECONOMIC INEQUALITIES IN DIETARY BEHAVIORS AND PHYSICAL ACTIVITY

A SYSTEMS APPROACH

Frank J. van Lenthe, Erasmus Medical Centre² & Utrecht University³

On behalf of PEN-WP5: Alexia Sawyer¹ Carlijn Kamphuis³, Laura Terragni⁴, Gun Roos⁴, Maartje Poelman⁵, Mary Nicolaou¹, Wilma Waterlander¹, Sanne Djojosoeparto³, Marie Scheidmeir⁶, Agnieszka Neumann-Podczaska⁷, and Karien Stronks¹

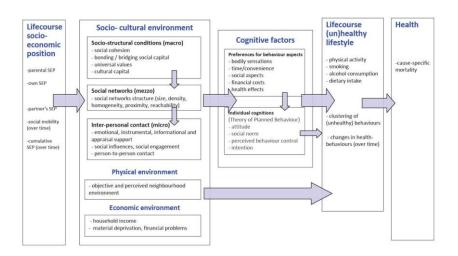
1. Amsterdam University Medical Centres 2. Erasmus Medical Centre 3. Utrecht University 4. Oslo Metropolitan University 5. Wageningen University & Research 6. Johannes Gutenberg-University Mainz, 7. Poznan University of Medical Sciences



Funded by the Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) with contributions from national funding agencies of participating countries

Brussels; 14 June 2022

SOCIOECONOMIC INEQUALITIES IN HEALTH


Source: Amended from Solar & Irwin, 2007

PEr

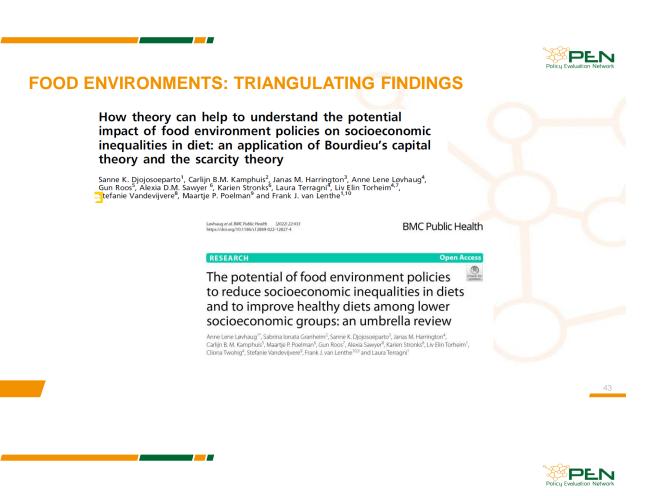
SOCIOECONOMIC INEQUALITIES IN HEALTH: A SOCIO-ECOLOGICAL PERSPECTIVE

PEN

41

WHY TAKE A SYSTEMS PERSPECTIVE?

Examine the economic, social and physical food environment as a complex adaptive system -i.e. a system of multiple, interconnected factors that exert non-linear influence on an outcome over time


Unpack dynamics:

- · Feedback / non-linearity
- Emergence
- Adaptation

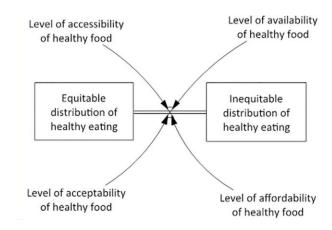
Causal loop diagrams (CLD) map causal connections and feedback loops

OUR CONTRIBUTION

Sawyer et al. International Journal of Behavioral Nutrition and Physical Activity (2021) 18:96 https://doi.org/10.1186/s12966-021-01164-1

International Journal of Behavioral Nutrition and Physical Activity

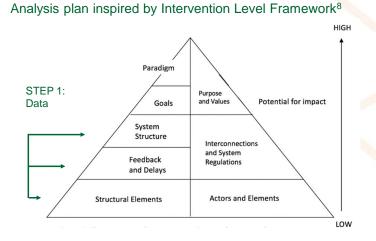
REVIEW



Dynamics of the complex food environment underlying dietary intake in low-income groups: a systems map of associations extracted from a systematic umbrella literature review

Alexia D. M. Sawyer^{1*}, Frank van Lenthe², Carlijn B. M. Kamphuis³, Laura Terragni⁴, Gun Roos⁵, Maartje P. Poelman⁶, Mary Nicolaou¹, Wilma Waterlander¹, Sanne K. Djojosoeparto⁷, Marie Scheidmeir⁸, Agnieszka Neumann-Podczaska⁹, Karien Stronks¹ and on behalf of the PEN Consortium

OBJECTIVE: UNDERSTAND DYNAMICS UNDERLYING FOOD ENVIRONMENTS IN LOW-INCOME GROUPS



1. Friel S, Pescud M, Malbon E, et al. Using systems science to understand the determinants of inequities in healthy eating. PLoS One 2017;12:e0188872.

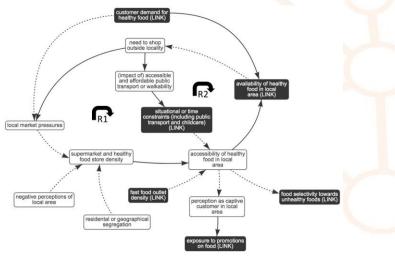
2.Caspi C, Sorensen G, Subramanian SV, et al. The local food environment and diet: a systematic review. Health & Place 2012;18:1172-1187.

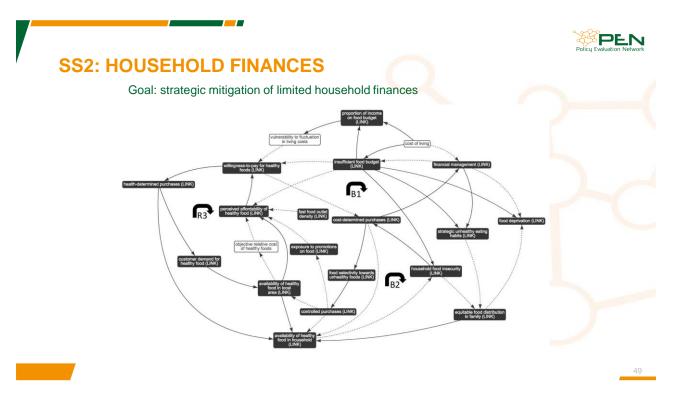
NOVEL METHOD: SYSTEMS-BASED ANALYSIS OF CLD

8. Johnston LM, Matteson CL, Finegood DT. Systems science and obesity policy: a novel framework for analyzing and rethinking population-level planning. Am J Public Health. 2014; 104(7):1270-1278.

PEN

RESULTS: FIVE SUB-SYSTEMS SS1: Geographical accessibility SS2: Household finances SS2: Household


SS3: Household resources


PEN

SS5: Social & cultural influences

SS1: GEOGRAPHICAL ACCESSIBILITY

Goal: economic growth of larger outlets (which have a trading advantage) and commercial efficiency or survival of smaller, local outlets

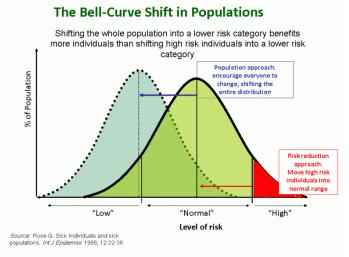
- Poor dietary intake in low-income groups can and should be presented as an emergent property of a complex adaptive system, that sustains a food environment that increases the acceptability, availability, affordability and acceptability of unhealthy foods.
- Reshaping the system requires
 - Longer-term management of household finances
 - Socially-oriented practices around a healthy food production, supply and intake
 - Supported by paradigm shifts

PEI

DERIVING RECOMMENDATIONS BASED ON SYSTEM APPROACHES

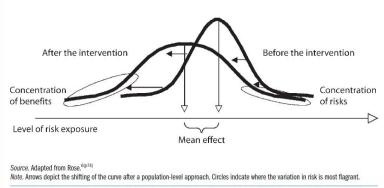
Frank J. van Lenthe, Erasmus Medical Centre² & Utrecht University³

On behalf of PEN-WP5: Alexia Sawyer¹ Carlijn Kamphuis³, Laura Terragni⁴, Gun Roos⁴, Maartje Poelman⁵, Mary Nicolaou¹, Wilma Waterlander¹, Sanne Djojosoeparto³, Marie Scheidmeir⁶, Agnieszka Neumann-Podczaska⁷, and Karien Stronks¹


1. Amsterdam University Medical Centres 2. Erasmus Medical Centre 3. Utrecht University 4. Oslo Metropolitan University 5. Wageningen University & Research 6. Johannes Gutenberg-University Mainz, 7. Poznan University of Medical Sciences

Funded by the Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) with contributions from national funding agencies of participating countries

Brussels; 14 June 2022

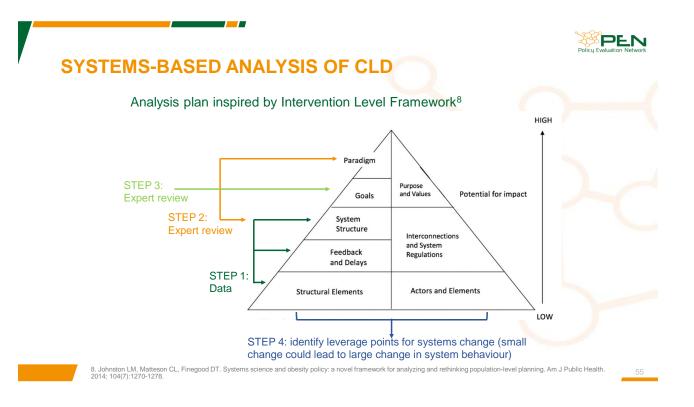

www.jpi-pen.eu

T

Policy Evaluation Network (PEN) @PEN_EU1

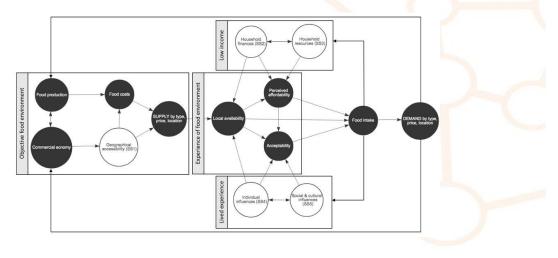
PREVENTION STRATEGIES REVISITED

 $\ensuremath{\mathsf{FIGURE}}\xspace 2-\ensuremath{\mathsf{III}}\xspace$ a population-approach intervention.


Frohlich and Potvin. Am J Public Health 2008

INTERVENTION-LEVEL FRAMEWORK

Description of Intervention Level Framework


Level	Description		
Paradigm	System's deepest held beliefs		
	Source of system's goals, rules, and structures		
	Difficult to intervene at this level but can be very effective		
Goals	Targets that conform to the system's paradigm and need to be achieved for paradigm to shill		
	Actions at this level can change aim of the system		
System structure	Interconnections between system elements and subsystems		
	Actions at this level will shift the system structure by changing system linkages or incorporating novel elements		
Feedback and delays	Allows the system to regulate itself by providing information about the outcome of different actions back to the source of the actions		
	Actions at this level can create new feedback or increase gain around existing loops		
Structural elements	Subsystems, actors, and physical elements of the system		
	Easiest level at which to intervene		
	Many actions at this level are usually required to create system-wide change		

RESULTS: STRUCTURE AND PARADIGM

Paradigm: Supply-demand loop operating in an economic paradigm

PEL

PE

THE ACTIONS SCALE MODEL

age

of

Dec

Nobles et al., 2021

SS1: Geographical accessibility

Leverage point determined by level of influence on the system (out-degree) with consideration for integration in system (betweenness-centrality)

ASM: Action Scales Model. The alignment between the three models is not as distinct as presented here. For example, Mahi et al. ¹⁶ suggest that "the rules of the system' and "information flows: may also be viewed as "structural elements" if they relate to a particular sub-system or actor within the system.

Leverage points - alignment between Meadows.14 Malhi et al.,16 Senge15 and the ASM

Intervention Level

System structures

Feedback loops and

Structural elements

Fram nework

Goals

Paradigm

Iceberg Mode

Mental models

System structure

Patterns

Events

ASN

Beliefs

- Goals

Structures

Events

Meadows' 12 Points to Intervene

Paradigm that the system arises out of

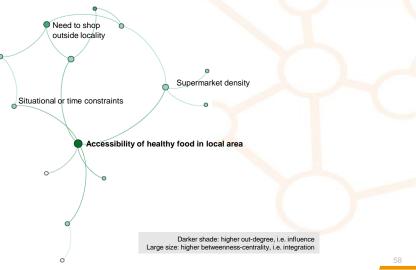
Gain around driving positive feedback loops

Strength of negative feedback loops

Structure of material stocks and flows Size of buffers and other stabilising stocks

Constants, parameters and numbers

Power to add, change, evolve, or self-organise system structure

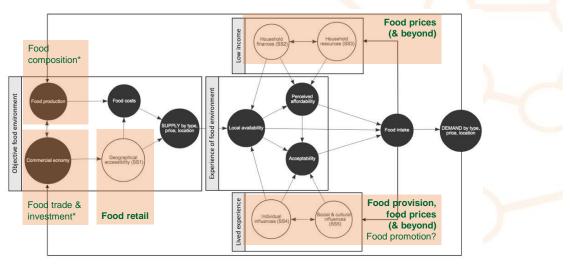

Power to transcend paradigms

Goals of the system

Rules of the system

Length of delays

Structure of information flow



USING POLICY TO STIMULATE SYSTEMS CHANGE

Sub-system	Goal	Leverage point	Food-EPI policy domain
Accessibility	Economic growth / commercial efficiency	Accessibility of healthy food in local area	Food retail
Household finance	Mitigation of limited finances	Insufficient food budget; cost- determined purchases	Food prices
Household resources	Mitigation of limited resources	Insufficient food budget; household food insecurity	Food prices
Individual influences	Acceptable cost- determined purchasing based on preferences cultivated by exposure	Household food insecurity; availability of healthy food in household	Food provision, food prices
Social & cultural influences	Alignment with social cultural models of consumption	Household food insecurity	Food provision, food prices

SIMULTANEOUS AND DIVERSE ACTION

*Not captured within the mapped system

60

PEN

Policy

E	COMMENDATIONS
Foc	d environment policies
•	Target mechanisms around accessibility via food prices and food retail policies
•	Target mechanisms around affordability and acceptability via food prices, food retail and food
	provision policies
•	Target exposure/vulnerability of low SES and the social determinants of dietary intake via food
	composition, food promotion, food prices and food provision policies
Pol	icy approach
•	Support an integrated policy approach, with simultaneous and diverse policy delivery
•	Use a combination of universalism, proportionate universalism and targeting in policy delivery
•	Support the delivery of policies addressing living conditions and inequalities in power and
	resources
Mo	nitoring and evaluation
•	Increase focus on monitoring and evaluation, to address gaps in the evidence base
•	Acknowledge the wider system of determinants and policies when monitoring and evaluating
	policies, for example, in the selection of relevant outcomes
Inte	grating a systems perspective
•	Discuss the level of systems change that is being aimed for and understand what evidence and
	which stakeholders are needed to achieve this
•	Conduct and synthesise different types of research in order to build a picture of the system

Interactive discussion questions

- Which <u>opportunities</u> do you see for using system approaches in <u>your work</u>?
- Which <u>challenges</u> do they see for using system approaches in <u>your work</u>?
- What do you think need to change in order for <u>stakeholders</u> to take a systems approach to diet, physical activity and obesity?